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The flow of vibrational power through structures is an important characteristic in

understanding the behavior and the dynamic response of an elastic structure. In the case of thick
or curved structural components, the vibrational power can be transmitted by different wave types
which have different propagation characteristics through the structure and which can propagate at

different speeds. A wave propagating through a structure can be scattered into other wave types
when the wave encounters discontinuities in the structure, such as changes in cross section, stiffeners

or bulkheads, etc. If the structure is fluid loaded, some of these waves propagate at supersonic speeds
and can therefore very efficiently loose some of their energy to acoustic radiation. The efficiency

of noise radiation from a structure is very much dependent on the presence of wavenumber

components which are supersonic relative to the acoustic fluid that surrounds the structure. The
supersonic wavenumber components can be associated with either waves that propagate at

supersonic speeds or with supersonic wavenumber components created due to the presence of

discontinuities. Consequently, for noise control purposes, it would be required to differentiate
between the relative contribution and strength of the structural intensity that can be associated with

different wave types or wavenumbers.

Additionally, dissipation mechanisms introduced to dissipate the propagating vibrational
! power can be wave type dependent. Dissipation efficiency is different according to the type of wave

and certain type of waves can act as short circuiting paths for the energy transmission. Therefore,

an understanding of the power propagated by different wave components and how the power
propagated by one wave type can be scattered into other wave types, is an essential element in the

design for vibration control. A form,-Liton is required to relate the scattering of vibrational power
from one wave type to another based on the characteristics of the discontinuity. The control of

scattering of vibrational power into those wave components which are either efficient radiators or

can act as short circuits around energy dissipation mechanisms can reduce the sound radiated by a

structural component.

The objectives of this work, as defined at the beginning of the project, were to develop

analytical and experimental techniques for the analysis of power flow through thick connected plate
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structures and to identify the components of vibrational power flow that can propagate across a

discontinuity in a thick plate structure. The emphasis was to be placed on the interaction and

scattering between the different wave components in the presence of structural discontinuities. An

approach was to be developed that can directly provide the structural intensity components

associated with the different wave types. The influence of fluid loading was to be considered based

on the progress of the research. Specifically the objectives were as follows:

1. Using the formulation for analytically describing the interaction between in-plane and

out-of-plane waves developed in the previous work, formulate the basis for determining the

influence of discontinuity characteristics on the scatter of vibrational power across the

discontinuity.

2. Experimentally measure the components of the structural intensity associated with the different

wave components.

3. Develop the formulation for integrating the influence of fluid loading, and the additional

coupling that exists through the fluid for coupled structures for finite coupled plates.

At the beginning of this research program, i~a techniques were available, in the open
literature that can be used to evaluate the flow of vibrational power through thick connected

structures, especially if the structure is finite and mode dependent results are required. Some work

had been done previously for two plates joined in an L-shaped configuration [ 1] which did take into

account both the in-plane and the out-of-plane waves. However in that analysis [1], a thin plate

formulation was used for the representation of the in-plane waves and the coupling between the

in-plane and out-of-plane waves only existed because of the configuration of the structure being

analyzed.

Furthermore, the concept of structural intensity or power flow had not been fully explored

as a method by which one can describe the behavior of elastic structures. The type of information

that can be obtained from structural intensity analysis includes:

1. Location of vibration sources and sinks

2. Critical power flow paths

3. Locations on the structure with a high level of energy loss associated with either acoustic
radiation or mechanical dissipation.

4. Identification of the dominant wave components (with a component decomposition of the

structural intensity) that are involved in the mechanism by which the vibrational power is
transmitted.
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had not been considered.

With regards to experimental analysis of the power flow, past work generally has been

limited to thin plates or beams of infinite extent. Some work has been done by Williams [2] that

considers thin elastic shells and which takes into account propagation by both in-plane and

out-of-plane waves. The work by Pavic [31 on thick structures concentrates on developing a

measurement techniques using strain gauges and velocity transducers to measure the in-plane
velocities. While this paper contains a very good discussion on the errors associated with the

measurements, the approach is not easy to implement because of the required installation of the
strain gauges and the way the in-plane motions are being detected. Berthelot and Jarzynski [4]

designed a laser probe for the measurement of in-plane structural motion. Using two interfering
laser beams the out-of-plane motion of the structure is filtered out of the measurement. Both
frequency domain results and time domain results have been obtained. By scanning the laser probe,

the in-plane structural intensity can be determined. While this is one of the most useful techniques
for measuring in-plane motion or structural intensity, different probes or processing would be
required to measure simultaneously the out-of-plane structural intensity. It would be desirable to
have a single probe that can simultaneously measure both the in-plane and the out-of-plane wave

motion and thus structural intensity. None of the available experimental techniques can distinguish

between structural intensity components propagated by different wave types. N1 IS IRA&I
DTIC TABUnannounced ]. ,

The work done can be classified under three categories: JUstification......

1. Analytical By _

2. Simulated and direct experiments Dist, ibution I

3. Signal Processing. Availability Codes
Avail and/or

ANALYTICAL WORK Dist Special

Thick Plate Analysis Q./ I

The analytic approach used in the research under this grant is based on 1e Mobility Power

Flow (MPF) method [5]. In this approach a complex structural element is divided into subsystems
where each subsystem represents either a physical subcomponent of the global structure or a wave
component within a physical substructure. Mechanical mobility functi ,is are then derived for each

of the subsystems without reference to the other subsystems or the type of loading. Assumptions

can be introduced on the junction loading to simplify the problem by reducing the number of

mobility functions included in the analysis. the response of the global structure is then obtained by

developing a mobility matrix equation based on continuity of forces and displacements (velocity)

at the junctions between the subsystems. This approach has the advantage that by dividing the global
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structure into subcomponents, analytical solutions can be obtained for relative complex structural

systems which would be difficult to analytically model otherwise. Additionally, since the mobility

function required in the matrix equations are generated for the subsystems independent of the

influence of the external loading or the other systems, the MPF approach is very efficient when

performing parametric analysis on the response of the global structure, for variation of one of the

parameters of one of the subsystems. Only the mobility functions associated with that subsystem

needs to be re-evaiuated.

The MPF technique is particularly applicable in the middle frequency range, where the

middle frequency range is defined as being higher than the first one or two modes of the global

structure which can be very effectively determined using finite element (FE) analysis, but below the
region where the modes become strongly coupled and other techniques such as Statistical Energy

Analysis (SEA) would be more appropriate. Beyond the first couple of modes of the global

structure, the computational requirements of the FE approach may be prohibitive while the results

generated by the SEA method would be too generic possibly leaving out some important

characteristic of the response of the global structure.

Using the MPF method, a solution has been found for the determination of the structural

power flow between two coupled finite plates of different thickness. In the solution coupling

between the in-plane vibrational motion or power flow and the out-of-plane loading has been

achieved. Initially the solution was based on the Mindlin [61 and Kane and Mindlin [7] solutions

for out-of-plane and in-plane analysis, respectively, of thick plates, and by defining the

out-of-plane external load acting on one of the surfaces of the plate as being made up of two

components, acting on opposite surfaces of the plate. These two forces have two resultant at the

mid-plane of the plate where the solutions of Mindlin are derived. One resultant load is a transverse

force and the second resultant load is a "pinching" [72] force. The influence of this decomposition

is that the out-of-plane load acting on one of the surfaces of the plate imparts vibrational power to

both the in-plane and out-of-plane waves. Using this set up, a solution for the structural power flow

is obtained for a number of different thickness combinations of two coupled finite plates. The

thickness variations range form equal thickness to a thickness of the receiving plate, which is the
plate with no external excitation, being two times thicker than the source plate, which is the plate

with the external excitation. The thickness of the source plate is kept constant in the analysis.

The results of the first analysis [8] show that for the out-of-plane flow of vibrational power

between the two plates, any variations in thickness will reduce the magnitude of the vibrational

power flow. Maximum vibrational power transfer occurs when the two plate components are of

equal thickness. The results for the in-plane power flow are however different. In this case, as the

receiver plate thickness increases, the magnitude of the vibrational power flow increases, reaching
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a maximum for a thickness ratio of between 2 and 4. With further increase in the thickness ratio, the

flow of vibrational power between the two plates decreases. The increase in the magnitude of the

power flow is more significant at low frequencies, where the product of the longitudinal

wavenumber and thickness (kh) is less than approximately 0.5. Because of the fact that the flow of

vibrational power associated with the in-plane waves increases as kh increases (for kh < 0.5), and

the rate of decrease of the power flow associated with the in-plane waves for kh > 0.5 is slower than

that for the power flow components associated with the out-of-plane waves, more of the available
vibrational power goes into in-plane waves as the plate thickness changes. Therefore changes in
structural thickness to control the flow of out-of-plane waves vibrational power may result in more

power being placed in the in-plane waves.

From initial the work based on the equations of Mindlin's [61 and Kane and Mindlin's [71,

a modified version has been developed which uses the approach of Mindlin and Medick [9] which
includes the second thickness harmonic for the in-plane waves. The frequency at which the second

harmonic becomes important is comparable to the frequency of the first thickness stretch mode for

structures with a material which has a value of poisson's ratio of order 0.3. This is common for most
materials and therefore Mindlin and Medick's approach is more appropriate. Based on this

approach, the same type of analysis for determining the coupling between the out-of-plane and the
in-plane waves have been used. In general the results are comparable with previous results. That

is, for the problem of the two coupled plates with different thicknesses, the ratio of the in-plane wave

power to the out-of-plane wave power increases as the thickness of the plates increases. The ratio

of the transmitted power to the input power generally varies in the same way as was previously

obtained.

The results obtained thus far are for a discontinuity between two coupled finite plates

consisting of a change in the thickness between the two plates. The same approach can be extended
to other types of discontinuities in a rather straight forward manner. There is a limitation on the

maximum frequency or thickness that can be considered in the analysis, if the Kane and Mindlin [7]

approach is used. However, this limitation is removed if the approach by Mindlin and Medick [9]

is used.

One interesting new feature which was observed while performing the analysis using the

modified approach, but which is not a result of this new approach is that no scattering takes place

between the vibrational power of one wave type to another at the discontinuity. Initially this was
thought to be a problem with the analysis but when analyzing the governing equations of motion

and the results more closely it was observed that scattering would only take place when a load,

external to the plate is applied at the discontinuity. The change in the plate thickness discontinuity,
because of the fact that the Mindlin approaches are for the mid-plane of the plates, with a Legendre
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polynomial expansion to describe the thickness dependency, no additional loading at the surface of

the plates is induced by the presence of the discontinuity. The discontinuity only influences the flow
of vibration power by one wave type or the another. Any additional loads are created at the
mid-plane of the two plates which therefore do not couple the in-plane with the out-of-plane waves.
This results in no interaction between the wave types at the discontinuity and hence no scattering
of vibrational power. For scattering to take place, a discontinuity which creates an external loading
on the surface of the plates, such as would be obtained from a stiffener or a bulkhead, is required.
If this is considered, there is scattering and the significance of the scattering increases as the force
or moment created by the discontinuity increases.

The force or moment created by the discontinuity (stiffener or bulkhead) is a function of the
impedance of the discontinuity and the velocity of the plate along the line of attachment of the
discontinuity. A complete analysis on the variation of the strength of the scattering with changes
in the impedance or mobility of the discontinuity as a function of frequency has not yet been

completed. From this analysis it would be expected that the optimum impedance or mobility for
minimum scattering of the vibrational power from the out-of-plane waves to the in-plane waves
can be obtained.

To verify the approach used for coupling the in-plane and out-of-plane waves when a load
is applied to the surface of the plate, based on the Legendre polynomial expansion, the results from
the Mindlin and Mindlin and Medick analysis have been compared to results obtained from a
solution of the three dimensional stress equations using an approach similar to the one proposed by
Hutchinson [101. There are some restrictions when using the 3-D stress solution without the
approximation of Mindlin [6,91. One of the most significant is the limitation on the types of
boundary conditions that can be described. The results that have been obtained are for a plate with
all edges free. Another limitation is the complexity of the solution. Comparing the results obtained
for the response using the 3-D stress approach to the results from the Mindlin approach, when a load
is applied on the surface of a narrow thick plate, the results from the two approaches are comparable.
This suggests that the approaches of Mindlin and Mindlin and Medick can provide the required
results without having to deal with the full 3-D stress equations, which are much more complex to

solve. Also, the agreement between the two sets of results verifies the approach that has been
developed here to couple the in-plane and out-of-plane waves with the excitation applied on the
surface of the plate.

Fluid-Loaded Plate

The influence of the fluid loading was investigated using the same MPF technique as for the
thick plate analysis. The purpose of the analysis is to investigate the influence of fluid loading on
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the power flow between coupled plates across a discontinuity. The analysis is performed for finite

plates which create some severe complexities in the solution. Furthermore, since the analysis of the

interaction through the fluid between coupled fluid loaded structural elements had not been done

in the past, this analysis was restricted to thin plate systems. The objective is to use the results

obtained here as a building block for future work that would include both the in-plane and the

out-of-plane waves for a thick plate structure or a shell structure. The extension to thick plates with

both the in-plane and the out-of-plane waves can be accomplished using the developed approach

as a basis. The complexity in the solution arises because of the boundaries of the plate, especially

if the boundaries are arbitrary. To deal with the arbitrary boundary conditions, the equations of

motion for the plate and the fluid are spatial Fourier transformed into the wavenumber domain. This

eliminates the need for assuming a known mode shape. Having performed the spatial transform a

ielationship can be established between the scattered pressure and the motion of the plate. Since the
plate is finite, when taking the spatial transform of the elastic part of the equation of motion of the
plate, eight response related parameters are obtained in the result of the transform. From knowledge

of the boundary conditions a set of four equations can be derived. The other four equations are

obtained from the condition that due to the presence of the fluid-loading, the response of the plate
must always remain finite for all frequencies, even if the structural damping is equal to zero. From
the two sets of four equations, 8 simultaneous equations are set up and solved to evaluate the

unknown parameters in the transform of the equation of motion.

In solving for the scattered pressure part of the equation of motion, this equation only holds

over the surface of the plate. Outside the plate surface, different parameters have to be introduced

in the equation. For example if the plate is surrounded by an rigid baffle, the stiffness term in the

equation of motion outside of the boundaries of the plate should be made infinite. The spatial

transform of the elastic part of the equation of motion is thus a truncated transform creating the eight

parameters ,mentioned in the previous paragraph. Mathematically the same truncated transform

should be applied to the scattered pressure component of the equation of motion. the relationship

between the scattered pressure and the plate surface velocity is however based on the full transform.
Therefore the spatial transform of the surface velocity cannot be directly substituted for the

truncated transform of the scattered pressure. This difference between the full and truncated

transforms is analogous to an edge effect. If the scattered pressure waves decay very quickly away

from the edge of the plate on the surface of the baffle, then the differences between the full and

truncated transforms of the scattered pressure are insignificant. For light fluid-loading the
differences between the truncated transform and the full transform, are not significant. Physically

this implies that the edge effects are insignificant, which is expected. Furthermore, for light fluid

loading the solution including the truncation of the scattered pressure can be readily obtained by
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expanding the solution in a taylor series which converges. The series has a fluid density term in the

numerator which for light fluid loading is very small and thus the solution converges. For heavy

fluid loading, as expected the edge effects are more significant. The difference between the full and
partial transform of the scattered cannot be neglected. In this case however, expanding the solution
in a similar series as in the light fluid loading case, the solution diverges. The fluid density term in

the numerator is significant and the terms of the expansion diverge. A solution including the

truncation can still be obtained, but it is more complex mathematically. The complete solution is
in the form of a Friedholm integral of the third kmid, which can be reduced to a Friedholmx integral

of the second kind. The solution can then be obtained using a projection method where the first
approximation is the solution without scattering. This approach has been successfully implemented
and a solution obtained for two end coupled plates and two plates coupled to form an L-shaped

configuration. In the case of the L-shaped plate, the diffraction from the outside comer is not
considered.

EXPERIMENTAL ANALYSIS

Simulation Results

In the experimental phase of the work, simulation experiments were performed on a thick,

L-shaped, finite plate. The L-shaped plate configuration was selected since the analytical solution
which can be modified to evaluate the components of structural intensity at each location on the

plates, was already available. Using the derived expressions from the analytical solution, structural
intensity maps are generated for each of the components of the wave motion in the thick finite plates.

An analysis was performed on the influence of thickness and frequency or mode number on the
structural intensity maps. The results of the analysis show that the out-of-plane structural intensity
components decrease with increasing wavenumber and thickness product (kh), for a fixed mode

number, while th, in-plane structural intensity components increase as the kh value value increases.
Less vibrational power is imparted to the out-of-plane motion with increases in the thickness of the

plates. This result is consistent with some of the results obtained in the analytical section. Also, as
would be expected, for thin plates the components of structural intensity associated with the in-plane

motion are insignificant when compared to the structural intensity components associated with the
out-of plane motion. As the thickness increases, out-of-plane motion structural intensity

components become the dominating components. The changes with the mode number are very
similar to the changes with thickness. The controlling parameter is the kh product, which is modified

by either changes in the thickness or the frequency.

The simulation analysis also allowed for the determination of the required spacing of the

measurement locations to evaluate the spatial transforms for the computation of the structural
intensity components using finite differences. It is concluded that to obtain meaningful estimates
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of the spatial derivatives, spatial distances of the order of 1% of the minimum wavelength are
required. This can make the separation distance very small. In developing the simulation results a
separation distance for the measurements of 1 mm on a 0.5 m by 1.0 m plates is considered.

Experimental Measurements

Apart from the simulation experiments, direct experimental measurements of structural

intensity were performed on a thick plexiglass beam of thickness 0.025 m, with one of its ends
embedded in sand, to damp some of the out-of-plane motion, and with an external load applied at
the free end. The external load consists of an in-plane load applied slightly off axis to induce both
in-plane and out-of-plane waves. The vibrational power associated with either the in-plane or the
out-of-plane waves propagate at different speeds, with different wavenumbers. Therefore a
frequency-wavenumber decomposition can be used to decompose the structural intensity values
into components associated with the different wave types. The decomposition of the intensity

components is performed at the cross spectrum stage, before the final intensity vector is computed.
The structural intensity vectors can then be plotted as a function of frequency and wavenumber, with

the magnitude at each frequency and wavenumber value representing the relative fraction of power

flow associated with the corresponding wave type.

In implementing this concept for the measurement of structural intensity on a thick beam,
vibration measurements were taken at a number of equally spaced locations along the length of the

beam. The in-plane and out-of-plane motions are measured by a single transducer mounted on the
surface of the beam. The in-plane waves induce an out-of-plane motion due to the poisson effect.
The magnitude of this out--of-plane motion is significant for thick structures. With the mainly
in-plane excitation induced in the beam, the out-of-plane motion associated with in-plane waves
is of the same order of magnitude as the out-of-plone motions associated with the out-of-plane
waves. Frequency cross spectra were formed for each of the measurement locations and by

performing a spatial transform on these measured cross spectra, the frequency-wavenumber
structural intensity spectrum is obtained. In the case of the beam, in-plane longitudinal waves and
out-of-plane transverse waves are the predominant wave motions, thus the ftquency-wavenumber

spectrum of the structural intensity shows two distinct set of peaks, one set for the out-of-plane
waves, where the relationship of wavenumber with frequency at the location of the peaks shows the

characteristic dispersive curve, and the second set of peak corresponding to in-plane longitudinal
waves, where the propagation speed is independent of frequency. If instead of the beam a plate was
considered, then apart from the longitudinal in-plane waves, in-plane shear waves would also have
been present.

Additionally, measurements were performed on a semi-infinite thick beam with and without

a discontinuity. The measurements of the beam response were in this case obtained using a
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stereophonic magnetic head mounted on a scanning table. Discrete cross-spectral density data

between the response at selected locations on the surface of the beam and the input load were first

determined and then spatial Fourier transformed to obtain a frequency - wavenumber cross spectra

of the response. The cross spectra are manipulated to obtain the frequency - wavenumber plots of

the structural intensity. A stereophonic pickup was used to simplify the acquisition of the data.

The experimental results obtained for the semi-infinite beam show the expected two

components of the structural intensity which propagate with different wave speed, hence different

wavenumbers, in the frequency-wavenumber plot. One component is associated with the in-plane

waves (fast wave speed) and the other component is associated with the out-of-plane waves (slower

wave speed). These results verify the technique that the scattering of vibration power can be

determined experimentally by using a frequency-wavenumber decomposition of the structural

intensity flow.

Signal Processing

Work was also performed on the signal processing approach required to manipulate the

acquired experimental data on a two dimensional, finite surface to deduce the
frequency-wavenumber spectrum of the structural intensity. In the case of a two dimensional

structure, wavenumber components exist for each dimension of the structure. For a structure with

both in-plane and out-of-plane wave motion, wavenumber components will also exist for each
wave type in every direction. The proper combination of the components in one direction with the

components in the orthogonal direction will result in the wavenumber values for the selected
frequency, and for the particular wave type. Without a priori knowledge, the wave number

components cannot be properly combined, however this problem can be worked around by using

a two dimensional transform. In this case, the peaks in the two dimensional wavenumber spectrum

will combine to represent the proper values for the wavenumbers for each of the existing wave types

in the structure. For example if a wavenumber spectrum is computed at a fixed frequency, for a finite

plate with both in-plane and out-of-plane motion, then the two-dimensional spectrum will have

three peaks, one corresponding to the out-of-plane wavenumber, another for the in-plane

longitudinal wavenumber and the third for the in-plane shear wavenumber. If multiple
two-dimensional spectra are obtained as a function of frequency, the trace of the peaks in these

spectra will represent the dispc.;ion characteristics of the respective wave type. These result have

been obtained for the structural intensity frequency-wavenumber spectrum for a finite thick plate

structure, using simulated measured data.

An issue which is of concern when performing spatial data processing with finite structures,

especially for low order modes, is the proper identification of the wavenumber components given
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the sever truncation of the vibration motion shapes. In the work performed here, to better distinguish
wavenumber components, the measured data is extended by either duplicating the data using

replicas of the ~ieasurmd data or by zero padding. Padding with zeros increases the resolution but

does not eliminate the side band effects. On the other hand, duplication by mirror imaging the data

such that discontinuities are not introduced eliminates or minimizes the side band effects. Either of

these two techniques are used in the processing of the simulated data to generate the
two-dimensional frequency wavenumber structural intensity plots. Using this approach, it is shown

that [t11 a good estimate of the wavenumber of the mode is obtained. This is demonstrated by the

consistency of the dispersion characteristics obtained for a particular wave type with what is

expected from theory. This issue will not be a problem for large structures or for high order modes.

Non-Contacting Measurement Technique

A laser based approach has been developed to perform measurements of structural intensity
associated with different wave components. In developing the approach, efforts were made to

determine not only the motion of the structure but also the first, second and third order derivatives.

The reason behind this requirements are twofold. First, to eliminate errors that are typically

introduced in the evaluation of the derivative through multiplying the wavenumber spectrum of the
response by the wavenumber. Since the wavenumber spectrum is derived from measurements,

estimates of high order derivatives based on these measurement have a high level of error [12].
Second, by directly measuring the derivatives, real time estimates of the structural intensity are
possible without further post processing, if a wavenumber decomposition is not required. If more

than one component of the structural intensity is present and it is required to discriminate the

components using a wavenumber decomposition, then post processing is required to obtain the
wavenumber spectra.

The approach used to estimate the derivatives is based on finite differences. With this
approach it is required that the response at multiple locations is measured simultaneously by the laser

system. The simultaneous measurements require a high degree of accuracy especially with regards
to the phase of the signal. The importance of phase accuracy in the measurement of the structural
intensity is well documented [13]. The determination of the derivatives using finite differences
would require the same levH1 of accuracy as if the structural intensity is being directly measured.
Another aspect of the finite difference approach for the determination of the response derivatives

is that the separation distance between the measurement locations must be less than 10% of the

minimum wavelength for which measurements are required. To be able to extend the measurement
up to as high a frequency as possible, the finite difference spacing is reduced. With a laser based

approach, since the thickness of the laser beam is very small, the spacing can also be made very
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small. However this creates a larger constraint on the maximum error that is allowed in the

measurement of the amplitude and the phase between the measuring channels.

Fiber optic techniques are commonly used in laser vibrometers. However if the fiber is

strained, such as would be the case if the fiber is bent, an unknown static phase shift is introduced

in the signal passing through the fibre optic cable. If only on.i measurement is being performed by

one single fibre, since the phase shift is static, this will not influence the measurement. However
when multiple point measurements, with different optical fibers, are performed, a non-recoverable

static phase error is introduced in each fiber optic cable. This phase shift destroys the accuracy

between the channels and thus the relative measurements between the channels. Finally the laser
based system had to be capable of handling more than one frequency component. That is for the

frequency wavenumber scheme to discriminate between different wave components of the structural

intensity an broad band frequency analysis is required.

With the above requirements established, a compact laser based measuring set-up with all

the laser components right up at the measuring front end, to eliminate as much as possible static

phase and magnitude errors has been developed. The set-up would be capable of measuring up to

the third derivative. However significant difficulties were encountered with the set-up and to-date

the set-up is still non functional. Outside companies were asked to help in this set-up, (United
technologies Optical Systems and Advanced Acoustics Concepts), supplying expertise in optics and

high frequency electronic circuitry. Instabilities in the electronic circuitry, caused by high frequency

interference on the measurement signals, that conditions the optical signal before it is passed to the
data acquisition system have not been eliminated.

The set-up of this laser consists of a diode laser source mounted at the head of the multi

channel system. The single source is then divided into 13 channels through a series of aperture plates

and lenslets. The front end set of the lenslets will focus the multiple beams on the vibrating target

which is 5 to 10 cm away. The total size of the head which includes all the optics is 0.33 m by 0.33

m. The selected set-up optimizes phase accuracy between the channels. The back scattered light

from the target is collected by two sets of detectors. The output of the detectors feeds to a processing

unit with a one channel handling each pair of detectors. By combining the signals from the pair of

detectors, the absolute phase of the channel can be estimated to an accuracy of a few milli radians.
Whether the processing can be done in real time is dependent on how fast the collected data can be

transferred from the memory on the processing boards for each pair of detectors to the processing

system, and how fast the processing system can manipulate this data to compute the structural
intensity results and store these results on some medium.
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This part of the project, to set up a laser based measurement approach to measure the surface

response and its derivatives from which both the in-plane and the out-of plane structural intensity

components can be simultaneously measured in frequency and wavenumber has not been very

successful. The main reason for this is an underestimate of the time and expense required to develop

an untested approach and set-up an experimental measurement technique by which all components

of the structural intensity can be measured. Development of this approach and set-up will continue

even after the end date of this project. Given the effort that has already been put into the

development, and the fact that now only engineering type problems remain, work will continue to

be able to perform some measurements. It has been shown by using, other forms of measurements

of structural intensity, that the data that will be generated by this laser based set-up can be used to

discriminate between the intensity components associated with different wave types.
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FUTURE WORK

Analytical and experimental tools have been developed which can be used to better

understand the flow of vibrational power across structural discontinuities in thick connected plate

like structures. The work done thus far, while establishing the basis, is by no means complete. Work

should be continued in this area to generate results for different thick plate and discontinuities

combinations. A more extensive experimental program is also required. Finally the techniques

should be extended to cylindrical shell structures including fluid-loading effects.
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POWER FLow THROUGH THE JUNCTION
BETWEEN Two END COUPLED PLATES

In previous work [1] equations were developed for the power flow across the junction
between two plates joined in an L-shaped configuration. In that case the two plates were joined at
right angle which coupled the in-plane waves with the out-of-plane waves at the junction. The
out-of-plane waves of the first plate would couple with the in-plane waves of the second plate at
the junction and vice versa. The solution was developed in terms of mobility functions which were
derived from Mindlin's thick plate equations for flexural out-of-plane motion [2] and thin plate
in-plane equations of motion in which only the thickness stretch motion was considered. An
improvement to this analysis uses Kane and Mindlin's [31 in-plane wave equations of motion.
Essentially these equations apply for the mid-plane of the plate with assumptions made regarding
the variation of the displacement as a function of the thickness direction. All forms of loading, both
for the in-plane and the out-of-plane waves are describe with respect to the mid-plane of the plate.
The consequence of this is that in-plane and out-of-plane waves remain uncoupled. This issue is
important when trying to obtain a solution for end coupled plates.

In the case of the end coupled plates (figure 1), because the junction between the two plates
is in the same plane as that of the plates, there is no angle which couples the in-plane with the
out-of-plane waves. That is, if the plates are subjected to a transverse load this would only induce
out-of-plane motion. While if the plate is subjected to an in-plane load it would only induce
in-plane motion. This is contrary to what would be expected physically. Intuitively it would be

expected that if a force is applied perpendicular to the surface of a thick plate slab, the force will
induce both in-plane and out-of-plane motion.

ssS

Figure 1. Configuration for end coupled plates.
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Various approaches were considered to work around this problem [4]. The literature was

surveyed and while solutions based on 3-D stress analysis were found, these were very restrictive

in their use, especially the type of boundary conditions that can be considered. Using a variational

approach it is shown that the Mindlin [2] and Kane and Mindlin [3], approaches for out-of-plane

and in-plane waves can be simultaneously derived from the 3-D stress equations, using the

assumption of linear variation for the deformations and the strains in the thickness direction of the
plate. Even though the equations where derived from the same 3-1D stress equations, the results are

two sets of independent uncoupled equations, one set describing the in-plane motion and another

set describing the out-of-plane motion, with the solution being in terms of the deformation of the
mid-plane of the thick plate. The deformation at planes away from the mid-plane are derived from

the assumed linear variation in the thickness direction.

Therefore, the decoupling between the two wave forms is a consequence of the linear

dependency in the thickness direction. Furthermore, the two waveforms remain uncoupled even
when external forces are introduced. This is because the solutio-. , ternal forces and boundary

conditions are all being defined with respect to the plate mid-plane. If the forces and boundary
conditions are to be defined relative to one of the plate surfaces and the same type of variation

assumed over the thickness as that for the deformation and strain, then coupling would be obtained

between the in-plane and out-of-plane motions [4]. This approach for coupling the two wave
motions is here implemented together with a refinement of the variation along the thickness

direction by using a Legendre polynomial expansion as used by Mindlin and Medick [5].

COUPLED IN-PLANE AND OUT-OF-PLANE WAVES USING MINDLIN'S
APPROACH.

In Mindlin and Medick's approach [5], variations along the thickness direction are expanded

using a Legendre Polynomial. That is,

V(x, y,z) 1 P W (X, y)
W~x, y,z) j =0
W(X' YZ)J i=O n

where P = 1, P,1 , d - 1 , etc. These displacements represented

by the first few terms of the expans.3n for all the plate motions, including those for the out-of-plane

waves, are graphically shown in figure (2).

The equations of motion from Mindlin [2] and Mindlin and Medick [5] are given by,

GV2uo + (A + +uo + vo + awlO 2.axax ay + h x it2
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GV2V0 + (A + a . aw 2V0

G G)au av 0 _UO +3x 1 +2 -ýWi= _3

Ox2 ' 2 W 3A I- 8 + 8vo - L-'(A + 2G)w1 +

3Gx 2 (a12  V2~ = e a2W,
h ax -ay

-* V)-~ (a + aV2\
V)V2 U2 + (1 + ax\ ýax ay

5Gx 2 2 (aW1 + 3U2 _X a2 U2
hkax h~ at

El - (au 2 + V2 \])Vv2 + (1 + Vay aXi ay-)

5Gx2 2 (aW1I 3v2- _ a2 V2  6.

w WO W, ----
01-ý x

rE

Figure 2. Displacement modes.
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D ( -V)v2UI + (I + V ) + Ay 2 •2Gh(U + IxWO = 9-h3 a2 7.,f. ar Ix lai (1 12 o,.v2
-D V-,)Vrv I + (I + V)a[ + - ,,2 h v, + -Wo\ _ h3 a2v1

[ \\ ay axay ay 1•Fo

x2Gh V2wO + -w- LohJ - aQ • 9.

where equations (2) to (6) describe the in-plane motion of the plate and equations (7) to (9) describe

the out-of-plane plate motion. The solution to these equations of motion is obtained by defining

two potential functions for the out-of-plane displacement (0 and tpo) and five potentials for the

in-plane displacements (01, 02, 0.3 ip and i2).

That is for the out-of-plane displacements u1 and vI can be described by the two potentials:.

U ao + 1Po 10.Ul=ax a-y:o

V1 - ay ax 11.

which when substituted into the equations of motion results in the following three equations of

equilibrium.

S[V20+ (R604 S- ) - 1 0 ]+ 1 a y[V2, 3 2,2 =0 12.
0 -S 10 -S IW1O]=0 12

ay [V2V20 + (R - PO~V22I 0 13.

V2(O + wo) + S60 4 Wo 0=0 14.

Eliminating ý and W,

v2(V2 +•32 0 - 0 15.

(V2 + 6 1
2)(V2 + 6 28)WO = 0 16.
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(V2 + 612) 01 = 0 17.

(V2 + 612) 02 = 0 18.

from which alternative expressions for the out-of-plane displacements are given by,

a1 ae2  aP

, (,,, - a)• + (a2 - a)2 + -•- 20.

WO 01 + 0 2  21.

where R •=h 2  S -=- D 60
4  = wX a 6•1,2

12 x 2 Gh' D "-7'2 0.2 R 6 04 - S-1

0R64 S-1
6l,22=~0O(RS (-,+Ioando6 3 = 1-

For the in-plane displacements,

Wl = alo1 + a 2022 +303 22.

UO = +91 a2 +- ýO 3 IV 123UO X4-'-- X y 23.
ax ax ax ay

ao4 a 3 O-V2  24.
U2 = #I' aX + #42 + #33y24

VO1 +02 + 913 + O125

ao• 1 P2 26.a•3 192
V2 = PI + 4- 2 +4- R3 4--- 26.

ay~ aOy ax

which when substituted into the equations of motion results in the following five equations of

equilibrium.

V21l I" =Pl 0 27.
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V21P + G - 1 -2,, = 0 28.

V20, + i2oi 0 , i = 1,2,3 29.

where a h[(A + 2G), - t 2 ] a.. h
=A .75(j22 E'h29 = _-4)5- 5X-24) 5Gx2

2  Q

_f E x 2 - 48(9%2 -4) [,9(% _ 1) + 4%GcoJt~1 - V21 X2[9G4 2J

2, 4,,2(9GI - 1)(9G - 4) 2L3,,3 G 3 F2 2=22(1-v) _ ~

L 2 1 - 2v ,and ýi are the roots of the equation,

all a12 0
a 12 a 22 a2 3 = 0 30.
o a 23 a 3 3

where for a plate of thickness 2h

2 ,2
= .... 2 2(2 h 2  x 2 q2 2 1~22

a,, =%2 -j 22 = - + 1 2 3

a 33 = ( ) + 2  4

a12 x 2l - 2)2 h a23- = 22(2 Ž) 31.

In equations (27) to (31), v is poisson's ratio and E and G are respectively the modulus of elasticity

and the shear modulus.

For a plate simply supported along two edges (y = 0 and a) and free on the other two edges

(x = 0 or b), the solutions that satisfy the boundary conditions are given by

01 = Ciex + Diekix sin(nxy) 32.
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02 = ( 2 A' + D 2e- 2 ) sin(nn) 33.

i0 = (C 3eii + DOek' cos( 34.

=(Ajei, + B~e -ýx) cos(M7) 35.

7PI= (A4e4X + BOe - sin(=bY) 36.

-P (A e'sx + Bsek-ix ) sin(TŽ) 37.

A

where ki , (i = 1, 2, 3) are the out-of-plane wavenumber components and Ic, (i = 1 to 5) are the
in-plane wavenumber componelts, respectively defined by

(M 2 A2 =a
+ kl,2 3  1.2,3 38.

+ kl,2.3  .2.3 39.

M)2 + -2 Qwj2(b +k4=-Z;7 40.

•)2 -2 2___2_ 15X2 2
+ k5 = h 41.

For a force applied on one of the surfaces of the plate,

F(x, y, z) = F(x, y) 6(z - h) 42.

This force can be decomposed using the same Legendre polynomial expansion as for the

deformation and the strains.

1=00

F(x, y, z) = 2 P y

The results of this expansion with different number of terms retained in the expansion is

shown in figure (3). As the number of terms increases, the result approaches a delta function at the
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surface of the plate (z/h = 1) . This expansion gives the coupling between the in-plane and the

out-of-plane waves is obtained. For a force applied as shown in figure (4), retaining only the first

two terms of uie Legendre polynomial expansion,

F(x, y, z)= F(x, y) + F(x, y) + .................. 44.

That is, the force is described by a force of equal magnitude applied at the mid-plane of the

plate and two forces with apposite direction applied on either surface of the plate creating a
squeezing load [5]. The transverse force applied at the plate mid-plane only induces out-of-plane

motion, while because of the symmetry about the plate mid-plane the squeezing force only induces

in-plane motion. This same type of approach was used by Lyamyshev [6].

35

30

1)
<0

. .)

.5 -1 -O.S 0 0.5 2

Normalized Thickness z/h

Figure 3. Sum of contribution from elements of the Legendre Polynomial expansion for the

surface applied load. - 5 terms; ---- : 10 terms; ...... : 20 terms.

The first few terms of the expansion match the linearly assumed variation in the Mindlin [2]

and Kane and Mindlin [3] solutions. The terms of the polynomial expansion describe both the

out-of-plane wave motion (Wo, UI, VI) and the in-plane wave motion (Wo, Uo, U2, Vo, V2),
where Wi is the displacement perpendicular to the plate surface and Ui and Vi are the displacements

in the plane of the plate.

To check the validity of this approach, especially the expansion of the surface force using
the Legendre polynomials, the solution for the response of a narrow and long plate (equivalent to

a thick beam) with an edge transverse load applied on the top surface of the plate has been obtained

using the above approach and compared to a solution obtained a 3-D stress analysis similar to the
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one used by Hutchinson and Zillmer [7]. The Mindlin and Mindlin and Medick plate equations

(equations (19) to (26)) are used in this solution for the thick beam by letting n in the sine and cosine

functions of equations (32) to (37) to be equal to zero.

yF

-2h

in-plane out-of-plane

Figure 4. First two terms in the surface load expansion.

3-D ELASTICITY SOLUTION

Considering a 3-D slab as shown in figure (5) where 2a and 2b are much smaller than 2c

(thick long beam equivalent to a plate with very narrow width) with free boundary conditions at its

ends and with a transverse force applied at one of the ends on the surface of the slab.

Y
IL •2a---w

Figure S. Geometry for 3-D elasticity analysis.

The 3-D elasticity solution starts from the basic 3-D stress equations.
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(k. + G) V (V.-u--) + o(V2 -U) = (,---) 45.

The solution to this equation is obtained in terms of Helmholtz displacement potentials,

U =V4+Vx V 46.

where 'U is the displacement vector given by,
A A A

U =(u i + v j + w k) 47.

and e? and V are scalar and vector potential functions respectively. These potentials must satisfy

wave equations of the formi,

vý = 4'l 48.

V21 ( 49.

where c, is the dilatational wave velocity and c2 is the shear wave velocity.

The solutions for the two potentials in Cartesian coordinates are given by,

[sin(cx)lfsin(Py) fsin(8z) 5
= lcos(ax) Jlcos(IYy)fI cos(8z)j 50.

Vi I {cos(Ux)I{cos(ýy)} {cos(Cz)} 51.

The terms in the 3 sets of brackets have 8 combinations, only four of which are independent. The

solution for the displacement vector is thus

-. [0ra j aO A
U - -- i+ LO

I I I

I1 +I j ax:- k 52.
aL az ax ay]

II III IV II III IV
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The overall response, as given by the above equation is divided into four components as indicated

by the roman numerals.

Similar expressions can be derived for the stresses solutions which for the direct stresses

these are given by,

oi = ke + 2GEi 53.

where e = i= 3ui/dxi and for the shear stresses these are given by.

"Tij = cyij 54.

where yij= aui/axj + auj/axi. The combinations of all the solutions are shown tabulated in

Table I which is taken from [71 In this table CL = w2A/c2.

Table I:
Solution Components in Cartesian Coordinates

I II In IV
"U {-'}{ c}{ } Pt "}{-' c}{s _j ,}{ ,}{_s} 0

V p •}{-{ •} _,*_;}{ SI{ S} 0 ,{ S}{ 0}{_S }C ,{ H}{ CIt- I 0 C1_}{ 11{ 1} -C 1 •} .}

a, -(CL+.2Ga{ }{ C}{ I } ,s 1G c.}{G - I } _2GO.•{_. ,I}-{_) 0

a, -(o+(I G }{ +}{ 2G,6} _ C _1}{-Ij 0} 0 cjjC }{'f-c}.
a, -(C+L ,{ + }{ 0 2G}tM-s}{ sj}{-'} 2G{ ;11}{-s}-
zy •{-cJ{-sJ{ ;} G•-p,){ ;}{ ;}{ ;} -1 ;I{-;I{-;} G• -;}{ ;It-;}

,z. 2y{-}{ c}{c(-c'$I G-• ){I{-; G,,--a2{ c}{ I[{ e} I -i-4 -1}{-.}

The contributions from each of the solutions of the vector and scalar potential functions, for

the four combinations, are arranged is such a way that a physical explanation can be attributed to

these contributions.

For example, if the upper terms in each set of brackets are considered, u is an odd function

of x, an odd function of y, and an even function of z. v is an even function of x, an even function

of y and even function of z., and w is even function of x, an odd function of y and an odd function
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of z. This contribution for a structure with one dimension much longer than the others, corresponds

to the even out-of-plane beam modes. The other combinations would correspond to odd

out-of-plane modes, even in-plane modes and odd in-plane modes.

For each of the selected combination, the solutions for the displacements or the stresses are

written in terms of a linear combination of 3 double series. For example, for displacement u,

NX NY
u 1 2: Amn fmn(Z) sin(am x) sin(P. y)

m=I n=1

NY NZ
+ 1 2 Bnp gnp(x) sin(On y)cos(Spz)

n=I p=1

NZ NX
+ I I Cpm hpm(y) cos(bp z) sin(am x) 55.

p=1 m-I

where

finn = ( A, anm cos(8z) + [- A 2 knA 3 6] cos(sz)) 56.

gnp = {- BI a sin(ax) + [- B2 k - B 3 SP ] sin(rx)) 57.

= (-C am sin(py) + [- C -C 3 6p] sinm(y)) 58.

The singly subscripted constants and the values of am, Zm', On, % 6p and ýp are chosen to

satisfy the boundary conditions.

For free-free boundaries, that is all surfaces free of any stresses, the boundary conditions are

given by Tyx(a, y, z) = 0 , T".(a, y, z) = 0 and oa(a, y, z) = 0 for the surfaces in the

x-plane, that is the surfaces perpendicular to the x-axis (figure 5). Similar conditions can be defined

for the surfaces in the y and z planes. The 6 shear stress boundary conditions are satisfied

term-by-term by selecting the parameters am, amp , 8p 6, and Sp to satisfy the conditions,

m -am -- (m 59.

n= On = (2n - 60.

1 - = (p - 14 61.
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from which

a2--E22 #2 -2 62.
1

U2 = L2 _63.
2

and similar expressions can be derived for T, •, 6, 5.

For the singly subscripted constants, arbitrary functions are selected that must also satisfy
the 6 shear stress boundary conditions. The functions for the singly subscripted constants selected

by Hutchinson and Zillmer [7] for the case of a plate or beam slab with all edges free are as follows,

A -= 26 sin(0c) , A2 = 0, A3  asin(mc) A4  sin(='c)'

B1 - •s B2 - B' B3 = - 26P' B4 O,
2a sin(aa) sin(a-a)' sin(d-a)' 4 =0

c 2 +a2-- m
- ( s M cos(2" b)' C 3 = 0, C4 64.

C_ __ _ 2a snB)csb c4= jb)

The remaining 3 normal stress boundary conditions are satisfied by orthogonalization over

the area of the respective faces on which they act. If no normal external load is applied to a particular

surface, then the integral from the orthogonalization over the area of the surface is equal to zero.
If an external normal load is applied on the the surface, the orthogonalized normal stress on the
loaded surface is equal to the orthogonalization of the external load.

For an external normal load applied io the surface in the y-plane ( force along the y-axis
direction), the integral of the stress function multiplied by the corresponding cosine or sine

functions, over the surface in the y-plane is equal to the integral of the applied external load, that
is

J f oy(x, b, z) cos(aiy) cos(8jz) dz dx = f f q(x,z)cos(aix)cos(8jz) dz dx 65.

0 0 0 0

where q(x,z) is the external load applied on the surface y = b. If the external applied load is a point

load of magnitude F0 applied at (xo, zo), then
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q(x, z) = F06(x - xo0)(z - zo) 66.

This procedure generates a system of linear equations. The number of equations generated

by the loading in each of the three orthogonal directions is equal to the number of modes considered

in that directions. Combining all the linear equations a system of (NX*NY + NY*NZ + NZ*NX)

equations is obtained, where NX, NY and NZ are the number of modes in the x, y and z directions
respectively. The solution to this system of equations yields the values for the A., Bnp and CM0 n

terms in equation (55). Having solved for these coefficients, the displacements or stresses can be

computed using equations of the form of equation (55).

Results for the response of a long thick beam have been obtained using the above approach

and the modified Mindlin and Mindlin and Medick approach. The results are shown in figure (6).
There are some discrepancies in the results, but these mainly stem from scaling factors and an

insufficient number of modes in the three orthogonal directions (see equation 55). What is of

importance is the fact that in relative levels the solutions from the two approaches match in as far

as the shape and ratio of in-plane response to out-of-plane response.

V~ 70.00 -III

60.0

50.00-

40.00 . .

"".00

20.00

0i

S0.00 2.00 4.00 6.00 8.00 10.00

1 Frequency

Figure 6. Ratio of out-of-plane response to in-plane response. -: result from approach

based on Mindlin's solutions; ------ result from approach based on 3-D elasticity analysis.

Mindlin [2j, and Mindlin and Medick's [5] approach is much more efficient than the 3-D

stress analysis approach [7) and can be adapted to a number of different boundary conditions.

Therefore this method is used to analyze the flow of vibrational power across the junction between

two plates.
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POWER FLOW

To evaluate the power flow across the junction between two end coupled plates, (figure 1)

the solutions in equations (19) to (26) are used to obtain the mobility functions that relate the

different motions (Wo, W 0o, U1, U2, V0o,V1, Vv2) to the all possible types of forces (T°6, T1, T01,

T.T T2 T .T T' ) where the same convention as the one used in [51 is used here and extended to1' 1' 5' 5'
include the forces associated with the out-of-plane motion (see figure 7).

z

x

Figure 7. Convention for forces representation.

It should be noted that the discontinuity at the junctions between the two plates considered
in this analysis is a change in the thickness between the two plates. The discontinuity does not

include an external mobility (or impedance) element which when attached to the surface of the plate
would create a surface force due to the relative motion between the plate and the discontinuity. It

is important to remember this point when analyzing the results since the absence of any external
forces at the junction will keep the in-plane and out-of-plane motions uncoupled at the junction.

To simplify the displacement notation, a numerical subscript representation will be used,
where subscripts 1,2 and 3 will denote the x ,y and z directions respectively. That is the response

in the Wo direction will be represented by the subscript 30.

Since the interaction between forces and displacements or velocities can only take place if

both the forces and the motions belong to the same type of wave motion, - in-plane or out-of-plane

- and there are 3 out-of-plane velocities (or displacements) with three corresponding force
directions and 5 in-plane velocities (or displacements) with five corresponding force directions,
then 9 plus 25 mobility functions have to be generated. Furthermore the solution for the in-plane
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and out-of-plane waves can be treated separately. Therefore, to solve for the power flow across the

junction between two end coupled plates, two sets of matrix equations can be formulated. One set

solving for the junction in-plane motions and forces and the other set solving for the out-of-plane

motion and forces. The two set of matrix equations, respectively for the out-of-plane waves and

the in-plane waves, are as following,
[Al 24 30 11 -+ M3630 11 M253 05 1 + M36305 1 M283060 + M38,3oTY] r - 2t

lM21 111, + M3,,,, A M11151 + M3,1151 M21 160 + M3,1116o T' = m2, I
LMl 2111 + M3N2111  MW2151 + "M 3 2151 AV 21w + M3,21JTOj [ 2

67.

[WO] A 353011 Al35051 Ml13060 TIU1- IMiIII MNiI151 MUilI60] T'5 68.

A l3 2111 A 12151  ,lo216 o

2-31 110 + M3,3110 M2,3112 + M3.3112 M2.3150 + M 3. 15 M20.1 2 + M3,.352 M7,31 61 + M 3,3161  - M21,31611
M1110 + M3,1010 M1102 + M3M012 MA.iVo + M3Ro1 M,.1052 + M3 0252 MV1061 + M3JW 1 1  I M21tJ061
M1210 + MV1 1210 M,., 1 212 + M"," 2 12 M + MN 1 M.125 + M 3 .1 2 2 MIMI + MN12,A - M 2 1 tI261

M2,201o + M 3 2010 M1.212 + M 3.2012 MI-2050 + M 3,,O M2• 5 2 + M 3,2052 MIMI + M 3 ,2• 1 rS M21,

M2,210 "+ M 3,2210 M27212 + M 3 1.22 2 M722. + M 3,= 2 M2=52 + M 3 ,M 2 MII 1 + M3,2Uj[rj MMI M j

69.

"w, 'M3511,, M1101o MN1, 1, MV,,0, 0  M 37,. r " 70.

U0  M 3 ,3112  Al3 1o12  M X3 1212  Mi3 2012  73.22 2 ru2 = MNo,,o M,,,o5o M1125., ,M,.0, MN2,5o/r,
Vý0  MN33 152 M34IO52 M112.52 M13 2052 MRM2 r
f2J M M3~,361 At3 061 M11,261 M3O,2% Atn 2 6, p~

where the notation used for the mobility terms consists of the first number indicating the location

on the structure for the response and the input load if its an input mobility function or the response

location followed by the force location if its a transfer mobility function, following is an i or a t to

indicate whether the mobility function is an input or transfer mobility and then the numerical

representation of the motion followed by the subscript and superscript of the force. For example

M2,3 060 represents an input mobility at location 2 for the 30 response due to a force T7 and M21 t3161

would represent the transfer mobility for the 31 response at location 2 due to a force TI at location

1. The combination of the result for the force vectors, from equations (67) and (69), and the velocity

response vectors from equations (68) and (70) will give the transferred power across the junction

between the two plates by the in-plane and out-of-plane waves.
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RESULTS

The input and transferred power flow results for two different thickness ratios are shown in

figures (8) (9) and (10). An interesting observation from these results is that while changes in the

plates thickness ratio changes the modal frequency of the out-of-plane waves, the change in
thickness ratio has no influence on the modal frequencies of the in-plane waves. The change in the

thickness changes the mass and bending stiffness and thus influences the out-of-plane motion of
the plates. However the modal frequencies for the in-plane waves are mainly controlled by the width

and length of the plates which is not modified in the above analysis. The power input and power
transfer associated with the out-of-plane waves shows variations with thickness while the power

input and power transfer associated with the in-plane waves remains in general the same.
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Figure 8. Poi-er Flow for the coupled plate problem for a thickness ratio of O.5. - : Input

power to out-of-plane waves; •-: transferred power by out-of-plane waves; ----. : Input

power to in-plane waves; - - -: transferred power by in-plane waves.

Another observation which is the result of the previously mentioned fact that there is no
coupling between the in-plane and out-of-plane waves can also be seen from the results. This

decoupling between the in-plane and out-of-plane waves is indicated by the fact that while the
power flow associated with the out-of-plane waves type changes with the thickness ratio, that

associated with the in-plane waves type remains the same. The in-plane waves are induced in the
plate by the application of a transverse load because of that the load is applied on the surface of the

plate.
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At the junction, since the solution is based on the mid-plane of the plates, the edge effects

due to the unequal thickness are not taken into consideration. There are therefore no external or

induced forces at the junction between the two plates which would couple the out-of-plane waves
with the in-plane waves. Out-of-plane wave energy or power is not scattered into in-plane waves

energy or power and vice versa because of the presence of the junction which has been selected here.

This will not however be the case if the discontinuity at the junction was a bulkhead or stiffener

which due to its mobility will induce a force on the surface of the two plates. In this case the
magnitude of this force will be dependent on the combined motion at the plate surface which thus

couples the two wave types. If the bulkhead or stiffener had only lateral stiffness in the direction

perpendicular to the plate surface and the mobility of the bulkhead is MB, then the induced force

at the junction will have a magnitude of (W0 + W1)/MB. Since this force is applied on one of the

plate surfaces the two waves would be coupled. In this case a solution similar to the one developed

in [81 can be applied.

CONCLUSIONS

A solution for the power flow across the junction between two plates has been developed

based on Mindlin and Mindlin and Medick approaches for the the response of a thick plate. In these
approaches a Legendre Polynomial expansion is used in the thickness direction to simplify the

governing equations of motion. Solutions are obtained for the equations of motion in the mid-plane

of the plate with the Legendre Polynomials describing the distribution of the displacements in the
thickness direction. The components of this expansion are orthogonal and the consequence is that

the in-plane and out-of-plane wave equations become uncoupled.

To couple the in-plane and out-of plane waves due to the actions of an externally applied

load on the plate surface, the load is also expanded into components using the same Legendre

Polynomial expansion. The results from this approach are verified by comparison to results

obtained using 3-D elasticity equations without simplifying assumptions. The solution for the

out-of-plane and the in-plane wave motions is developed in this case based on a superposition of

dilatational and shear motions. General agreement is obtained for the ratio of the out-of-plane
response to the in-plane response between the approach based on Mindlin's solutions and the 3-D

elasticity approach. There are some discrepancies in the the agreement between the 2 techniques,

but this is mainly attributed to insufficient number of modes considered in the 3-D elasticity
solution. The number of terms required to obtain adequate representation of the physical behavior

requires the size of the matrix equation to be very large, requiring significant computation time. The

approach based on Mindlin's in-plane and out-of-plane wave solutions is computationally much
more efficient.
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When using Mindlin's approach, without external loads - direct loading or loading from

externally attached structures (stiffeners or bulkheads) - the in-plane waves and out-of-plane

waves remain uncoupled at the junction. This is a deficiency of the model due to the fact that the

solution is described relative to the plate mid-plane. In the case of the two end coupled plates, with
different thickness, with external transverse load applied on one of the plate surfaces, vibrational

power is input to each wave type, however no scatter from one wave type to the other occurs at the

junction. Coupling between the in-plane and out-of-plane waves - which may result in the

scattering of vibrational power from one wave type to the other - would be obtained at the junction

if the junction includes a discontinuity which would create loading on one of the plate surfaces.
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AcousTic SCATTERING FROM FLuiD-LoADED PLATS
WmTH ARBITRARY BOUNDARY CONDMONS.

Acoustic radiation from infinite fluid loaded plates have been extensively considered in the

past [ 1,2]. Similarly for finite fluid-loaded plates where the boundary conditions allow for a modal

decomposition of the plate response [3]. In other work which deals with fluid-loaded plates where

the boundary conditions are arbitrary, generally the influence of the scattering is neglected. In this

paper, the dynamic response and acoustic scattering from a finite, fluid-loaded, rectangular plate,

simply supported on two edges and with arbitrary boundary conditions on the remaining edges and

set in an infinite rigid baffle, is considered. It is assumed that compressible fluids are present on both

sides of the plate and the plate is excited by an obliquely incident acoustic plane wave. Because of

the complexity in the solution, in this paper the plate is considered a thin plate with no in-plane

waves and negligible shear and rotary inertia effects. In future work a thick plate will be considered.

The work presented here is a step towards the analysis of the power flow between two coupled plates

including both the mechanical and acoustic coupling.

4. GOVERNING EQUATIONS

Consider a rectangular plate set in the plane z=0, bounded by 0 < x - a and 0 -- y -< b,

and set in an infinite rigid baffle. The plate is assumed to be simply supported along two of the edges

(x = 0 and a ), with arbitrary boundary conditions on the remaining two edges. The semi-infinite

spaces z > 0 and z < 0 are occupied respectively by compressible fluids with density 0 and Q2and

sound speeds c1 and c2. The plate is characterized by a mass per unit area D, thickness h and bending

stiffness B. An incident plane wave with angles of incidence 0 and 0 to the z and x-axes respectively,

excites the plate into flexural motion (figure 1).

, h

Figure 1. Plate and Baffle configuration.
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For a thin plate, the bending stiffness is given by B = Eh3/12(1 - v2), where

E = Eo(l + jig) is Young's Modulus, j7 is the structural damping, and v is Poisson's ratio.

The incident wave obeys the Helmholtz equation in the half space z > 0. The incident

acoustic wave is therefore governed by the equation,

pi = POe At+kX+k'y+kz) 71.

where kX = ksin 0 cos0, ky = kssinbsiO, k, = kcos 4 and k = w/cI is the acoustic

wave number.

k 2 = k2 + 2 2 72.

All field variables are considered to be time harmonic with the convention ei" , this time

dependency eit is however suppressed in the following derivations.

The equation governing small amplitude flexural vibrations of a thin elastic plate in the

region 0 < x < a and 0 < y < b, is given by,

BV 4W(xy) - DW2W(x,y) = [P] 73.

where W(x,y) is the transverse displacement of the plate at position (x,y) , V 4 is the square of the

laplacian operator and [P] is the total pressure acting on the plate due to the incident and reflected

acoustic waves and the scattered waves,

[P] = [Ps(X,y,Z)lZ=o - [Pi(x,y,z) + Pr(X,Y,Z) + Ps,(X,Y,Z)]z=o+ 74.

P,{x, y, z) and P,(x, y, z) are respectively the incident and the reflected wave pressures if the plate

is rigid and P, (x, y, z) and PS2(x, y, z) are the scattered pressure components satisfying the Helmholtz

equation and the radiation condition [3]. It has been shown [3] that the reflected pressure from a

rigid surface is equal to the incident pressure, and therefore equation (4) can be simplified to,

[P] = [Ps2(X,y,Z)lo_ - [2P,(x,y,z) + Ps,(X,y,z)],=O+ 75.

In determining the response of the plate, only the value of the pressure on the plate surfaces

is considered, that is all pressure components are evaluated at z=0. and therefore for simplicity the

z dependency will be dropped from the notation used in the analysis. At the plate-fluid interface

the normal particle velocity of the fluid must be equal to that of the plate [3], that is for 0 < x < a

and 0 < y 5 b,
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ap " (xYz-o) + jelo2, 2W(xy) = 0 76.

On the rigid baffle the normal velocity must vanish and the gradient of the pressure must be equal

to zero.

( YZ) = 77.
gz )z=O*

If the plate is simply supported on two of its edges, the boundary conditions along the simply

supported edges are given by: W(O,y) = 0, a2W(0,y)/1x 2 = 0, W(a,y) =0 and

a2W(a, y)/Ix 2 = 0. The boundary conditions on the other two edges are arbitrary. However to

demonstrate the approach and to generate expressions which can be used for the analysis of two end
coupled plate with a stiff support at the junction, it will be assumed that the two remaining edges
are also simply supported together with an edge moment at y=0, that is W(x, 0) = 0,

a2W(x, 0)/By 2 = 0, W(x, b) = 0 and a2W(x, b)/0y 2 = 0 or - M(x)/B depending on whether

the edge is just simply supported or loaded with an edge moment.

The solution is derived in the wavenumber domain. This is necessary to take into proper

consideration the influence of the scattered pressure. The forward and reverse spatial transforms

are defined by the Fourier transform pair,

I)- and f(x) =Zda 78.

P(a) = f- (x)e axnd f) J F(a)e

5. METHOD OF SOLUTION

,In the solution of the equation of motion, equation (3), a modal decomposition is assumed

in the direction perpendicular to the simply supported edges, that is along the x-axis direction

W(x, y) = • Wm(y)sin(-() 79.
m=0

Substituting into equation (3),

d4y ) 2km2d + km4 Wm(y) - DcO2W,,,(y) sin("'-) - [P(xy)]

80.
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where k, = m./a, is the modal wavenumber along the x-axis. Multiplying equation (10) by

sin (nux/a), and integrating from 0 to a,

d4 WM(y), 2km 2 d ~ y + (kM4 _ k, 4 )Wm(y) = -2Pi.(y) - P,,(y) + P,,(y)] 81.
d4y d2y

where 4 = DC02/B is the in-vacuo plate flexural wavenumber and Pi.(y), Ps,.(y) and P5,_(y) are

respectively defined by

,.(Y) = P f , y) sin(M )dx = -ajJe'k 82.

Ps,(Y) - PJ P(x, y) sin(--)dx 83.

Ps2-(Y) 2 P(x, y) Sin(T )• 84.

In the above equations use has been made of the orthogonality condition

sin(!t!x) sin(i )dx = if m =d n4 85.

In equation (12)

Jm =Ijkm~ (-1)meika 1 86.km -86.

When the acoustic wavenumber in the x direction is equal to the plate mode wavenumber

in the x direction, that is km= + kx, the coefficient Jm is not singular, but is given by,

2 if km = kx

Jm ={a if km =- kx 87.

Because of the nonlinear form of equation (11), there is no exact simple analytical solution

to this equation. If the scattering pessure components can be neglected, then an analytical solution
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is possible. Otherwise a numerical approximation method has to be used for the solution. The
following sections present solutions to the coupled equations of motion of the finite fluid-loaded
plate.

6. NEGLIGIBLE SCATTERING COMPONENT

Neglecting the scattered pressure component, equation (11) can be solved analytically and
the solution can be written in the form,

Wo.(y) = Wp(y) + Wh(y) 88.

where Wp is the particular solution of equation (11),

-- 4ao Jm ejk,y 89.
wBy) (k2 +k2) -

and Wg is the general solution of the homogeneous equation,

Wh(y) = yjeJKiy + Y 2e -jK'y + y 3eJXy + Y 4e -jKY 90.

In equation (20), Y5 ( i = 1 to 4 ) are arbitrary constants which are determined from the
boundary conditions. K 1 and K 2 are the roots of the dispersion equation and are given by

K1  m / + and K2 = + •/4Wk. KlandK2are selected such that the imaginary part

is positive.

In the case of a simply supported plate, the coefficients Y1 ( i = 1 to 4 ) are given by,

_k
2 - K2

YI =4k . sin(Kib) (eikP -kib) Wp(O)

k- K2

YkA =Y 2 (eikyb - e-iKj,) WP(O)
pk j sm(Klb)

k2 - K2
]"3 = - 'k~sin(tK2b)

Y4A = 4k1jsin(K2b) (eikb - ejK2b) W,(O) 91.
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where the additional subscript A is introduced for the simply supported case.

For a plate with an edge moment excitation M(x) at the edge y=O, the coefficients

Y( i = I to 4)aregivenby,

M -ejKib -eJKb

1M= 4k? jsin(K b)' r• = -4 sin(Kib)'

X *ei-K2b Ai eiKb~ 2
Y3M 4k2 j sin(K2 b) and Y4M 4k2 j sin(K2 b)

the subscript M is to indicate the presence of the edge moment. In equation (22),
a

M JM(x) sin nMXdx 93.

0

Other boundary conditions can be considered using a similar approach.

7. SOLUTION INCLUDING SCATTERING

When the scattered pressure components are not neglected, a relation between the scattered
pressures and the plate displacement is required in the solution. From equation (6), the relation

between the displacement W and the scattered pressure in the wavenumber domain is given by

,'PP s(at',') = jieo 2WV(a',fl') 94.

where y' is the acoustic wavenumber in the z-axis direction

'=± -k 2 -a' 2 _fl 2  95.

The appropriate sign and phase are determined by the physics of the problem. Fourier transforming

equation (11)

[(2 + km 2 ) 2- kp 4Jfm(o) _ (p2 + 2km 2)[ WmI(b)eib# - Wm'(0)] +

j.8(p2+ 2ki2)[ Wm(b)eibP - Wm(O)] - jf[Wm,,(b)eJbf - Wm,(0)] +

Wm"'(b)eib - Win'(0)= 1[- 2P P(fl)_- s,SB0) +/Ss,(f)] 96.
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where

Vm(p) = o Wm(y)eiYfiy, PS,.() = P,,.(y)eJh•dy,

PS2.0) fob P="(y)eiy dY and P(j) -" P.(y)eJY#ay 97.

The W primed terms in equation (26) are a result of the fact that the plate is finite. Introducing the

following simplifying notation,

A(P) = (P2 + k2)_ k A 3(A) - ejfib a 6(fl) = JfleJPb

+2k2)eA1 A4(48) = 1. A7((6) = - + 2k2)efib

A 2(f-) = _ (12 + 2k) - A8(fl) = jP%62 + 2k2)

98.

and

X 1 = Wm'(b) X4 Wm'(O) X7 1W0(b)

X2= Wm'(O) X5 Win"(0) X7 Wm(O) 99.

X3 = Wm"'(b) X 6  Wm"(b) X8 = W,(O)

Substituting into equation (26),

A(8)WVm(86) = Q(8) + l[Pss•.l)- ps,.()] 100.

where the function Q(8) is defined by,
i=8

Q(8) _ _ 2 () + X1 Afi(p) 101.
5=1

From equation (27) the Fourier transform of the pressure components also ranges from 0 to

b. Therefore, the relationship is not in the form shown in equation (24). The relationship between

PM) and m,(,8) (derived in Appendix A), is given by,

_ = l J J1 Q')G(86 - fl')W~m(f')dP' 102.
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pS2.0)=-A2 J 2 (8#)G(8 -l')Wm(81)dfi' 103.
B f= - GoJ

where AI = j 1w2/(2,r 2 aB), X 2 = jQ2W2/(27I 2aB), G(,6) ekb - 1/(/p) and Jl and J2 are

defined in Appendix A.

Due to the finiteness of the plate, for each wavenumber f, the scattered pressure component

is dependent on all of the plate displacement components. The fluid-plate coupling is represented

by the parameters X1 and X2 and the functions J1. and J2.. The coefficients X1 and X2 are functions

of the fluid loading parameters [1] al and a2 which are given by, a I = o02 e1/Bandn' = 0202/B.

The functions J1m and J2m represent the importance of the contribution of each plate

wavenumber to the scattered pressure. In particular, the closer the wave number is to the

wavenumber kin, the more significant is the contribution, (see Appendix A).

Substituting equation (32) and (33) into equation (30),

A()W'm(B) = QQ3) + K(Wm)(fl) 104.

where K is defined by,

K( )( ) -Jf [A1Jl.P') + -2')cPQ5')c48' 105.

The integral equation (34) represents the complete solution to the plate scattering problem.

In evaluating this equation, it is still necessary to obtain the eight unknown functions

Xi ( i = 1 to 8 ), which are present in the function Q(B). Eight simultaneous equations are
required to solve for these unknowns. Four of the simultaneous equations can be obtained from the

condition that whenever the polynomial A(B) goes to zero, the first term in equation (34) also goes

to zero and therefore the second term in equation (34) must also vanishes. Since A(B) is a polynomial

of degree four this condition gives four linear equations. The other four equations come from the

boundary conditions.

Equation (34) is a Fredholm equation of the third kind. The main difficulty of solving this

equation lies in finding an accurate representation for the operator K. Different techniques are

available to evaluate K [4]. These include, (a) Iterative methods, (b) Quadrature methods, (c) Kernel

approximation methods and (d) Projection methods.
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The iterative methods are not applicable because of the large values of the parameters X, and

X2 The iterative algorithm in general does not converge. For the quadrature method a large number

of points is required to cover the full range of integration which makes this technique very

computationally intensive. Thus, only the Kernel approximation method and the projection method

may be possible to use for obtaining a solution.

8. KERNEL APPROXIMATION METHOD

When the acoustic wavelength is less than the plate dimensions, the behavior of the plate can

be assumed to be similar to that of an infinite plate. That is, the function G approaches a dirac delta

function, G(B) = 2Ar6(3). An approximation for the operator K can therefore be obtained as,

K(.i) = - 2;r[AiJi,() + 106.

Substituting equation (36) into equation (34)

[A(#) + ( + 107.

When determining the unknowns in the function Q(#), four of the unknowns are determined

from the condition that whenever the denominator in the equation (37) is equal to zero, the numerator

must also vanish. This denominator is a sum of the polynomial A(8) and a perturbation function.

It can be assumed that the zeros of this denominator will be in the vicinity of the zeros K1 and K2

of the polynomial A(B). The actual zeros can be found by an iterative process.

9. PROJECTION METHOD

The Fredholm integral equation of the third kind (equation 34) can be simplified to an

integral equation of the second kind. This is done by determining the four unknowns of the function

Q which are not determined by the boundary conditions.

Considering the case of the simply supported plate, from the boundary conditions,

X5 = X6 = X7 = X8 = 0 and equation (31) becomes,

i=4

Q0 = - 2 .,0) + lXO4() 108.

The coefficients Xi ( i = 1 to 4 ) can be obtained from equation (34), since when 03 is

equal to one of the zeros of the polynomial, A ( ± K,, ± K2), the left hand side of equation (34)

goes to zero, the right hand side must also vanishes. Thus a set of four equations is obtained which

can be solved for Xi ( i = 1 to 4 ), that is
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>jXA14(9) = -K(Wmi)(R) + g 109.

where Kcan take values ± K, or ± K2. Solving this system of equations analytically, the result

is of the form

X 2 =X2A+ X2S X 4 =X 4A +X 4S

Where XIA, X2A, X3A, X4A represent the solutions of equation (39) when the scattering effects are

neglected. These terms are given by,

XlA --' 2 [j(j - Pi.(- KI)]I sin(K2b) - ['Pi(K 2) - Pi.(- K2 )]I sin(Klb)}

=2 k {j[P 1 (K1)e -jK,b .( - KI)eiKb] sin(K2b) -

['P1 (K2)e -jK2b - Pj( - K2)eJK~b] sin(Kib)} 112.

23 = I[Ptin(KI) Pi.- K1)](K2 + 2k2) smKb) -

[P1(K2) -P( - K2)](K2 + 2k2) sin(Kib)} 113.

X4 = j [P, ,.K 1)e -jKb P- .- K1 )ejK~b](K2 + 2k2) sin(K2b) -

[Pi (K )e -jK21~ - P,. (- K2)eJK21I](K2, + 2k2) sin(Klb)} 114.

XIS, X2S, X3S, X4S are the contributions from the scattering given by

=i A 1 {[KO(*m)(Ki) - K(W~m)( KI)]Isifl(K 2b)

[K(m)(2)- K(*,)( - K2)] Sin(Klb)} 115.

X~ ..... i K(fV'm)(Ki)e -jK'1 - K(W~m)( - KieK] si( 2b)-

[K(*-'m)(K 2)e -jK~b - K(*.)( - K2)eJK211] sin(Kib)} 116.
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X= ZJ{[K(1Ikm)(Ki) -K(Wm.X - K,) ]sil(K~b)(K1, + 2k.,) -

[K(Wm)(K 2) - K(*rti)(- K2)]sin(Kib)(K2 + 2k2)} 117.

-=A--i{[K(1i',,)(Kj)e jK~b - K(Wkm)( - Kj)eJK1'b] sin(K2b)(K22 + 2k2,) -

[K(,mX)(K 2)e -jK2' - K(fm)(- K 2)eJKzb ] sin(Klb)(K2 + 2k2)} 118.

where A - - 4jk2 sin(Klb) sin(K 2b). Substituting these equations into equation (38)

4 4

PB ifl) + LXiAAj(.) + LXisAffl) 119.
i=1 i=1

If the scattering terms are neglected in equation (49), then

4

A()A ) Pi.fl) + LXiA() 120.
B

where W*A () is the Fourier transform of the plate displacement when the scattered pressure is

neglected, given by the Fourier transform of equation (18). Substituting equations (41) to (48) into

equation (49), the following expression (see Appendix B) is obtained.

QQP) = A(fl)WA.(f) + + +0 [A 2J2V +8) mf'K5f'di 121.

where

r(B,1(82= - K22)sin(K 2b)

[G(K, - p')(ejK~b - eiffb) - G(- K, - p')(eJK~b - eJipb)]

- ( -2 K2)sin(Kjb)[G(K2 - PD)(e -iK - eipb) - G(- K2 - fl#)(ejK2b - eifb)]}

122.

And substituting into equation (34), the Fourier transform of the plate displacement is then given

by a Fredholm integral equation of the second kind,
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Wm() = *Af) -

I1_.L [AV1J&(f') + A2,2 00)[G(fl - P') + K(f8,6f')1Wm(f8')dfl' 123.A(8) _-.

The displacement of the plate then consists of a displacement contribution obtained by

neglecting the scattering terms and a corrective component introduced to account for the presence
and influence of the fluid loading.

If the plate is under an edge moment excitation, a similar procedure as above can be followed
to derive the dynamic response of the plate. The only change in the result being in the solution

WA.() to the plate displacement when the scattered terms are neglected. This solution will be

referred to as W*.(J). One can show that the constants XI, X2, X3, X4 in WM.(8) are given by

XIM = -" [K,1 sin(K2b) - K2 sin(Klb)] 124.

X2 - -- [K1 cos(Klb)sin(K2b) - K2 cos(K2b)sin(Kib)] 125.

X3M - - K( +2k)sin(K 2b) - K2(K2 + 2k,)sin(Klb)] 126.

X4M JM-[Kl(K22 + 2k2) si(K 2b)cos(Klb)

- K 2(K21 + 2k2) sin(Klb) cos(K2b)] 127.

where M is the edge moment, given by equation (23) and the dynamic response of the plate is given

by an equation similar to equation (53) with 0o.(8) substituted for WA.(O), where W0o.(#) is the

plate response when the scattered pressure is neglected and which is equal to WA (8) in the case of

acoustic excitation, WM.(B) in the case of edge moment excitation, and 'AQ(B) + WkM.(8) in the

case of both acoustic and edge moment excitation. Wo.(48) can be derived from equations (18).

Equation (53) is the general solution to the problem of scattering from a plate using a
projection method. Projection methods include the Polynomial Collocation method, Galerkin's
method, the Least Squares method, and others [4]. The polynomial collocation consists of
approximating the solution to the integral equation using a set of polynomial basis and a set of
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collocation points. The performance of this method depends on the choice of this set of points. For

the problem considered here, the solution is highly oscillatory and the range of integration is between

-- o and +a*, making this approach inappropriate. The Least Squares method is also not suitable since

it requires the calculation of multiple integrals. Galerkin's method consists of decomposing the

solution using a basis and approximating the solution by truncating the decomposition. The

performance of the method depends only on the choice of the basis. This method is the one used

in the solution.

10. GALERKIN'S METHOD AND CHOICE OF BASIS

If the scattered pressure is neglected, the solution for the plate displacement is of the form

ery (equations 19 and 20), where Y can take any of the complex numbers, ± K1 , ± K2 , Ky. The

form of the solution for the plate displacement including the influence of the fluid-loading will in

general not significantly deviate from this form. Therefore, it can be assumed that the solution will

still be of the form eKy, but with different values of 1". In the wavenumber domain, the solution

will have a component of the form G(r + fi). Using a Taylor expansion, G(K + P) can be written

as,

k + r , 128.
n=O n!dn 1

Let 4,n([) = dnG(fl)/d"fi, these functions are a basis of the space of oscillatory functions.
That is, any oscillatory function can be decomposed uniquely in terms of these functions. The

evaluation of these functions is presented in Appendix C. The plate displacement in the wavenumber

domain can therefore be decomposed in the form

00

WmQ3)= an4n(fl) 129.
n=O

where the coefficients ( an , n = 0 to 0o ) are to be determined using equation (53). In the

Galerkin', method Wm, is approximated using a finite summation, that is equation (58) is truncated

for some value of N, which is chosen based on the desired level of accuracy. Substituting equation

(58) into equation (53)

N

W 0.() = I an[On(f) + Vn(fl)] 130.
n=O

where
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131.

The coefficients a. (n = 0 to N) can be obtained by solving a set of equations of the form

N

n-=0

for 0 : I : N, where

< UV > - u(~v (~dp133.

The asterisk indicates a complex conjugate. Substituting for < q,,, >, < ip, > and

< 01 > (see appendix C)

< O,,,¢ > = 2.nb(- d)' (ib)'+n 134.
n+l+ 1

< Vn,0',, > and < Wo0 ,,1 > are computed using a numerical integration. When the

fluid-loading effects are neglected, the term < IN, 01 > in equation (62) can be neglected. The

solution to this system gives an approximation to the exact solution 4'o, which is given by equation

(50) or by equation (18). It has been found that N=5 gives an excellent approximation to W- o,. It

is therefore assumed that N=5 will give a good approximation to the exact solution when the

scattering terms are included in the solution.

11. INPUT POWER

The power input to the plate is balanced by its dissipation through mechanical losses and

acoustic radiation. From the equation of motion of the fluid-loaded plate,

- 2PI(x,Y) = _B [V4V(x, y) - k4V(x, y) + P,(x, y) - Ps2(x, y) 135.
JO)I

the power flow into the plate from the incident pressure is obtained by multiplying both sides of the
above equation by V * (x, y)/2 and taking the integral over the plate surface. The total input power
to the plate is thus given by,
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= _, 4Re{ 1:2 P,(x.y)V * (xY)dXdY 136.

The factor of 2 in front of the incident pressure is included to take into account the reflected pressure

contribution. Substituting for the displacement using equation (9) and using the notation of equation

(12)

H,.•_ - Re P,.j v 1s y 37.
fI ~ 2 0 P(Y)VM *(Y)dy} 37

m-I

The spatial integrals in the expression for the input power can be replaced by integral in the

wavenumber domain using the complex Fourier spatial transforms. Therefore

1=' E 4a 138

?, is the full-range Fourier transform of Pi.(y). From equation (12)

.2P 0

Pi.(y) = J-f" Jm eiky 139.

therefore

P.8') =J-a Jm 6(8' + ky) 140.

and

H7 = z - P0 Jmag{JriV*m (- ky)) 141.

m=1

12. SCATTERED POWER

The scattered power is the power transferred to the fluid from the plate and is given by

I17 1Rfa:f: [PS(,Iy) - P 2(x, y)]V * (x, y)dxdy} 142.
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In terms of modal contributions I17 can be written as

17s = •_ Re { PS,.(Y) - Psjy)]V, , *(Y)dy} 143.
m= 1

From Appendix A, the relationships between the full-range Fourier transform of the scattered

pressure components and the plate surface velocity are given by,

, )= 2=1J/UA.(8')m, n3')=- 144.

P2,(8') =- •p2oJ2.(/ P )Wm(.8') _ W 2.(8, ,,,8 , 145.

Fourier transforming equation (73),

173=2 # ee~()+e1 8]~()12d6 146.,,,1 f• W-*

From Appendix A, the real parts of Jl.(f) and J2.(8) are not equal to zero only for the wavenumber

satisfying 01 < k. Therefore only the components of the plate displacement corresponding to these
wavenumbers contribute to the radiated sound power. The range of integration in equation (76) can

be reduced to - k < P 5 k.

- -)2 Re[@iJl,.(4) + Q02. 2. (8)]Jpm(8)12d,8 147.

To be consistent with the fundamental law of the conservation of energy, this scattered power must

always be less than the input power to the plate. According to equations (74) and (75), the terms

that mainly represents the influence of the fluid loading on the plate displacement are the integrals

J..) and J2.(P). It is shown in Appendix B that at a particular frequency of vibration, the form

and associated physical nature, of the fluid loading represented by Jj.(1 ) depends upon how the

plate wavenumber P in the Y direction is placed with respect to the acoustic wavenumber k. For

L1 a k, the integral Jl.(8) is purely imaginary and is given by equation (A. 12). This imaginary part
represents the effective mass loading on the plate by the reactive component of the fluid loading.

For 0 1 k, the component Jj.(f8) has both real and imaginary parts. The real part contributes to

the far field radiation and it represents the resistive component of the fluid loading. This real part

is present at all frequencies for a finite plate.
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From Appendix A, equation (A. 15), for any given wavenumber P, ( 01 < k ), the maximum value

of the real part of J1.(8) is reached when the mode wavenumber km is less than the value of V, given

by V = V 2- 2. In this case, the range of integration in the integral giving this real part includes

the maximum value of the integrand. Thus when the wavenumbers of the plate in both the X and

Y directions are less than the acoustic wavenumber, that is above critical frequency, the acoustic

radiation will reach a maximum.

Of interest here is the radiation from a plate where none of the resonant modes excited in the plate
are radiating as efficient acoustic radiators. That is when the plate is excited below the critical
frequency. For a 6 mm thick steel plate in air the critical frequency is around 2 kHz. Therefore in

the results the frequency range is limited to 1 kHz.

13. MECHANICAL LOSSES

The mechanical losses component of the power flow includes both the power lost due to the internal
structural damping and the power transmitted across the junction if the plate is a component of a
global structure. An explicit expression for the mechanical losses is given by,

=__ M= d4 rn0 - 1V 2dVmyTHM = -jaBf 4 dy4  dy - 2krm2d (ddy2 + (km - kp4)V(y) Vm* (y)dy
m=1 fOL

148.

Integrating by parts

HM= 4Y w 2[XX7 X4X8  X6X 1 * + X5 X2

rn-1

2k(X 1X7 *-X2X 8 *)] +j dy2  
___2_ y

2k2 dy ý dy d+0
2k2 bcVy d(•y.)•• • *d Y (m4 - KP4)JIV(y)I2dy} 149.

where Xi, i = 1 to 8 are defined by equations (29). In the above equation, the spatial integrals can

be transformed into the wavenumber domain as follows,
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I: IV(y)I 2 dy + lp I(8)124 150IS.

and the Fourier Transform of the derivative of the velocity is,

VW) = I(xeAb - x 2 ) -jP,(f) 151.

Thus

fb
L d(y) * 27

Similarly for the second derivative of the velocity,

fb v ) (2V(.y)\ *

fbdy2  d2y /y

2af j'w(X~e ifb - X') + P,(X~eifib -X2) -i p fl 153.

The mechanically dissipated power is thus,M = cc - x , -x * +
m=,s

11 M Z ao "¶x X2 x 6X1 *]+
rn-1

8pwf ~eli 2)P~~~)12 + (km 4 + 2km 2#92 - kp 4)IV(8)12]d#o

154.

In equation (84), the terms with X5 and X6 represent the transmitted power if the plate is connected

to another plate. The rest of the terms represents the dissipation due to the structural damping.

In the case of a plate simply supported on all four edges, equation (84) reduces to,

""p M= 00 + (x l - x2) - P2()12 +
m=1

(km 4 
-kp4 + 2km2p2)IV(fl)2]6 155.
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For a plate with an edge moment at y =0 and with simple supports on the remaining edges,
where the edge moment is due to the influence of another structure attached to the y=0 edge of the

plate, the mechanical dissipation is

M=1 001M~mHu= aB, X, X2, *+
4j

8prw 1 0[i(xieb-x 2o p ~ ~ I + (km4 _ k, 4 + 2km2p2)if O)2d#

156.

In this case, the transferred power is given by

=17 I aB) x5 X "2  157.

14. RESULTS

Results have been obtained for a steel plate of dimension 1.m by 0.5 m and thickness 6.35 mm. The
Young's Modulus of steel is E= 200 GN/m2 and the Poisson's ratio is 0.3. Two structural loss factors

are considered in the analysis 10-2 and 10-5. The plate is excited by an incident acoustic waves with
pressure amplitude 10-4 Pa and with angles of incidence of 0 = 450 and 0 = 45* . Results are
generated with and without the influence of the fluid loading. In generating these results, both the
Kernel approximation method and the projection method are used.

The results for the input and transferred power are normalized with respect to the incident power

on the plate, which is defined by

P2ab
17 =- 158.

.~1c,

The ratio of the input power, which is the power transmitted to the plate, to the incident power on

the plate is a measure of the transmission coefficient T of the plate (T = Hi/ H) and the ratio of the

scattered power to the incident power on the plate is the portion of the power scattered to the far field
and is defined as the reflection coefficient R, (R = H.I/PI).

The results for different mode numbers and different levels of the internal loss factor are shown in

figures (2) to (19).

14.1. AIR-LOADING

Figures (2) to (9) show the results for the transmission and reflection coefficients for different modes
and loss factors using the two alternate solution methods presented in sections (5) and (6). It can
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be observed from these figures that in the case of light fluid loading (air), the Kernel approximation

method and the projection method give similar results, especially for high loss factors. At high

frequencies the two methods give exactly the same results. At low frequencies there are some

differences, especially in the results for the lower loss factor and these are expected since in the

Kernel approximation method a short wavelength assumption is used. At low frequencies the

infinite plate approximation does not hold. The kernel approximation method has a tendency to

overestimate the input power to the plate. However for the scattered power from the plate, the results

given by the kernel approximation and the projection method and results obtained with the fluid

loading term neglected in the solution for the response of the plate, are the same. The main reason

for this is that the plate response is hardly influenced by the light fluid loading

From these results one can conclude that even light fluid-loading has some influence on the

transmission coefficient of the plate, at low mode numbers. The fluid loading increases the input

power to the plate since some power is radiated into the acoustic medium. The influence of the fluid

loading is also dependent on the structural loss factor. From figures (6) and (7) it can be observed

that away from resonance frequencies, the scattered power is independent of the structural damping.

On the other hand, the input power appears to increase with increased structural damping.

To show the importance of acoustic scattering, figures (8) and (9) show both the transmission and

the reflection coefficients on the same plot. The input power into the plate is always greater than

the scattered power from the plate. This is consistent with the requirement for the conservation of

energy. The input power to the plate is balanced by the scattered power and the structural dissipation

which is always positive, equation (86). At almost negligible loss factor, the input and the scattered

power are almost equal.

When the structural damping is very low, the resonance peaks are very sharp and no modal

interactions occur as the energy of the system is contained in very narrow, separate bands of

frequencies. Thus, the acoustic field at any frequency is generated solely by the mode that is resonant

at or near that frequency. The radiation damping is mainly due to the acoustic field generated by

that mode. The total power flow can thus be obtained from the modal power flow for the plate.
When the structural damping is large, the width of the resonance peaks increase, and each mode is

excited over a wider frequency band. In this case to obtain the total power flow, a summation over

excited modes is necessary.

14.2. WATER-LOADING

In the case of heavy fluid loading (water), figures (10) to (14), show that the results obtained by the

Kernel approximation method become inconsistent with those given by the projection method. The
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kernel approximation method has a tendency to overestimate the input power into the plate and

underestimate the scattered power from the plate.

Both methods predict a strong fluid loading effect on both the transmission and reflection

coefficients. The fluid loading significantly modifies the plate mode shapes. There is a decrease

in the resonance frequencies from the in-vacuo resonances frequencies. This is because of the added

mass entrained by the fluid and which is significant in the case of water. As for the light fluid loading,

the structural loss factor has a significant influence on the power flow for the plate, figures (12)

shows the influence of the structural damping on the transmission and reflection coefficients. As

in the case of light fluid loading "air), the scattered power from the plate is always less than the input

power (figure 13), however in the case of the heavy fluid loading (water), the plate scatters a

significant portion of the power input to the plate.

From all the results for the heavy fluid-loaded plate, it can be observed that each resonance

frequency is preceded by a minimum. The response of the plate is composed of an almost uniform
driven response as the plate were infinite and an oscillating term due to the edge effects. Below a

resonance frequency, there is a phase shift of 7c between the driven response and the oscillating term

and cancellation occurs, which is responsible for the minimum value right before the resonance

condition. At and above a resonance frequency, the two terms are in phase and their effects adds.

At the resonance frequencies, both the transmission dn reflection ratios have a huge peak. Near the

resonance frequencies, the plate absorbs more power than is directly incident upon it. The plate

absorbs power from the acoustic waves incident on the adjacent baffle. This energy is then scattered

by the plate. At the resonance frequencies, the induced velocity field on the plate vibration becomes

large and increases the level of scattering. These results are similar to those found by Photiadis [5]

for a semi-infinite plate. Photiadis suggests that the plate grabs energy incident on the adjacent

baffle to within a distance of Ao/2, where A0 is the acoustic wavelength. In the case considered here,

Ao is larger than the plate dimensions at all the considered frequencies. Thus the energy absorbed

by the plate from the adjacent field is significant.

14.3. COMBINATION WATER AND AIR LOADING

Figure (15) shov,. 0 -, transmission and reflection coefficients computed using the Projection

Method when thc fLMd loading on the excited side of the plate is water and the other side the fluid

loading is air. The results for the mixed fluid loading are compared to other fluid loading conditions

in figures (16) and (17). The scattered power is highest when the plate is water loaded on one side

and air loaded on the other side. This increase in the scattered power is attributed to the way the plate

interacts with the fluid loading and the excitation.
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15. CONCLUSION

A solution has been obtained for the dynamic response and acoustic scattering from a
fluid-loaded rectangular plate with arbitrary boundary conditions on two of the parallel edges of the

plate. The solution takes into account the finiteness of the problem, especially when dealing with

the scattered pressure. The influence of the finiteness of the scattered pressure is negligible for light

fluid loading, however for heavy fluid loading it has a significant influence on the scattered pressure.

The solution that is presented here can be used to analyze the response of coupled plate systems taken
into account both the mechanical coupling and the acoustic coupling through the common acoustic
medium.
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and different methods of solution. -: Projection method; - - -: Kernel approximation method;

S....-: No fluid loading. (a) mode 1; (b) mode 2; (c) mode 3; (d) mode 4.
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modes and dfifferent methods of solution. -- : Projection method;- - -: Kernel approximation method;
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Appendix A

= P,,.(y)e~yldy = f jaf [b PsI(x~y)e(JPYldy si(mXXX) A. 1

Using the inverse Fourier Transform

PSI (X, y) 2 f f P-,(a ',fi')e j'-!'dad,8' A.2.

4aa

_ eifib -1 fa *m )e7rx\
where GO8) = I: ffydy A and Sm(a) = sinMa~-ed

n2= Qa

W(x,y) I > W 2(1y)sin(2!xL) AA4
13=1

and

=V ~ I3 I Wf(')S12(a") A.5.

Substituting into equation (24)

n=1

and

PSfI. ye JIQi73J n(8')GQ5l - hJn.v(P~/ A.7.

where 0) = 2/(2,r 2a) and
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f J S,(a')Sm- a') , A.8.

Similarly

n=P~Q)=-J#02 >n,'G. - fi-JmnB -# A.9.

The negative sign is introduced in equation (A.9) because the scattered pressure waves are

propagating in the negative z direction.

In equations (A.7) and (A.9), the terms of the summation for which p ; m represent the intramodal

interaction. This coupling has been shown to be negligible when the fluid loading is light and the

modal density of the structure is low [4]. If the intramodal coupling is neglected,
+e

J,.()= k ' [i - (- 1)mcos(aa)]A

f (a2 - k2 )y

where y = ± ,k2 - •2 _ a2. The sign of the square root term is chosen according to the radiation

condition, that is the scattered pressure is equal to zero at infinity.

If k < fi, y is imaginary, y= j P 2  2 + a2

If k>#, y= (2-- 2_a2 for a sk 2 -#2 and y = -j /a 2 -k 2 +# 2  for

a ak 2 -.

If k = P, y is imaginary,= - ja.

In equation (A. 10), the integrand is an even function of a and therefore

+ 0

24 ( [ ( - ( I)mcos(aa)]
J 1 O) = (a2 - k2)2 da A.11.

0

Also Jj.(8) is an even function of P, and therefore the integral in equation (A.10) can be limited

to P a 0. The solution for different ranges of k and P is as follows:
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÷. f(a) da A.12.
f J/V2 + a 2
0

Jl1 (k) = 4k2ni L(a A.13.

0

At zero, the integrand goes to infinity when m is odd and equals to zero when m is even. However

the integrand is also an odd function for odd values of m and therefore the value of the integral always

goes to zero for odd values of m.

CaseO0 < a < k:*

jlffl, 42 i- ~1mOncs~G )] da +j ([1 - (- 1)mcos~aa)] da A. 14.(a 2 - 2)2 f/V2 -(a2 - k2)2 /a2 -

av

Jl.(#) = 4k2m f(VcosX)dX + j f(Vc/z)dX A.15.

0

In equations (A.12), (A.13) and (A.14), V - and

f(a) = [1 - (- 1)mcos(aa)] A.16.

(a2 - k)2

The function f is a smooth function and is not singular at kin. For a = kin) f(km) = a 2/(8m 2;r2).

In equation (A. 15), the substitutions, x = a/V, and x = cos(X) for the first integral and x = ch(X)

for the second integral have been used.

The integrands in these integrals are smooth functions and therefore can be directly evaluated

numerically.
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Appendix B
From equation (28), A,(,) = A2(,6) A3Q5) and A 4(P) = 1

i=4

Z XjA 1j(8) = A2(8)[A3(8)XL4 + X.1+ A3(8B)X 3A + X4A B.1

From equation (20):

{sin(K2b)[(e -jK~b - ejfib)K(Wm/)(Kj) _ (ejKSjb ejfib)K(* ,)- KI)] -

sin(Kib)[(e -jK~b _ eipb )K(Wm)(K 2) - (eiK2' ejfib)K(W~m)( - KT2)]1 B.2

A3(0X3A+ X4A = - 1 rnKb)(K22 + 2k 2)

[(e -jK~b - eiffb)K(li/m)(Ki) - (ejiktb - ejb W)( - K,)] -

sin(Klb)(K2, + 2k 2)[(e -jK2b - eiflb)K(W,)(K)

(e Xzb - eJpb )K(f~i/ - K2)]} B.3

i=4

R(e -jK,b - ejflb)K(tV-m)(Kj) _ (eiXtb - eJ/~b)K(yVV )( - K,)] -

smn(Klb)(h8 2 - K2,)[(e jK2b - eifib)K(;7V)(K2) - (ejK2b - eipb )K(fWm)( - K2)]} BA4

Substituting for function K

i=4

where
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K(,#)= _L(2- K22)sin(K2b)

[o(KI - fl')(e-jKtb - eJpb) - G(- K, - fil)(eJK~b - eifib)]

.2- K2)sin(Kib)[G(K2 -,)(eiz - e -8 G(- K2 -f)(il- ei~b)]

B.6
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Appendix C

Functions On are defined by 4),,) = d'G(B)/dnfl, where G(.) = e - l/ P).

The recurrence relation for On may be obtained by operating on the series, (3.27).

00

G(z + P) = > CA
n=O

Using the definition for G(0)

00

- 1 j(.8+ Z)Z1 )On(a6) C.2
n=O

Differentiating this equation with respect to z and then with respect to f
0o

jb 2ei(8 +z)b - Z . [(n + 2)n I+lAM) + f)n +2(.8)] C.3
n=O

where use was made of the relationship, Om+ 1(0) = dom(8)/(dfi)

Substituting for the exponential term

On -I(Q) = .-L[(n + 1 - jb)on4+On + C.4

Given 'o and 0 1 any other On can be computed. For high value of n and small values of fl, '04)

is very small and numerical problems occur. A better way to compute these functions is to use

Miller's algorithm applying the recurrence downward [4 page 142 and 281. The method of

computing On4() consists of starting from some arbitrary value O)$j) = e with M >> n and r a

small number, and making use of the recurrence downward. All the On(,4) thus computed have a

common normalizing factor given by

b (jb)" C.5

b (o= n C.6
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Appendix D

In computing < On, 0t >,
+ 0

< "€ >0n lo > f n), Ow D.1

where On(P) = d"G(l)/dlf". The function G can be expressed as an integral
b

G(8) =f eh'ydy D.2

0

and therefore

b
n(8) f (,Y)neiydy D.3

0

b b =--l)n(,y eifi0',-Y2) dY)dY2 i 2jrb(- 1)0' + n + I

0 0
D.4

since

+f eif(Y1-Y2) d = 2Jdf(Y -- Y2) D.5

In computing < V,,O, >

+ 00

< Vn'0J > ipn(fl)0j * (P)dp D.6

-0Go

and substituting for t,,j) from equation (61) and interchanging the order of integration,
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+ 00

< JN0 [AIJI1P' + A2.#)nf)0(8di D.7

6,(00) f=G( - P~') + K(O,fi')]4 *1 (8)df8 D.8

A contour integral can be used to evaluate eq, 3 !on (D.8). Substituting for 01 * (8) from equation

(D.3) and substituting for G(8 - fiT) from equation (D.2).

b + 00 ~+00

01(80) P1 rI - 1 G(8-fi')eij~ydfi+ 1 -K(6,fi')e ijPydpldy
0I Go-0 A(8) j _ A(8)

D.9

+ 00 yFr b, +o

1G(8 fi')e jfiydp dpdy "p y
fJ Go A(8) f f Aif(Br)48 + f1 AJ(BI;)48

D. 10

[+00 l eh(Y) ejK4y - + ei-iy -

_ 0 A(46) I(K + j3'A'(K (W2 + PT)A'(K 2)]D1

I[I y eiPYIY) 8dY =y 2 iKP'e-jK~y - e ji' + ei(K2-P')be jK7-v - e -Jjfy
f f (8)(KI- fi)A'(I(K 2 - P')A'(K2)

D.12

And

(.. )JY f bL+ K(i5 4 9')e-Jfy~dy =( 1)'2;r j [eibKI01(- KI) HI(B) +
fYf 0A(B) A'K 1)

0

eibK 201(- 2 2A' 4 ~(1H3(fi) + A()H4(0') D. 13

AV( 2)H26 A'(KI) yA1( 2) ]
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where

H1(8') = - 2k2sin(K2b)[G(- K, - - G(KI -

1 2(P') = - 2k2sin(Kb)[G(- K2 - - G(K2 -/f')] D.14

H3(A') = - 2k.sin(K2b)[ei-jKbG(KI - - ej,"G(- K, -

H 4 (f') = - 2ksn(Kib)[e-jK"G(K2 - P') - ejK2bG(- K 2 -

X,(.), for Y= ± K1 , and ± K2 , can be evaluated using equation (D.3).

In computing < Wo,,01 >

< fVo.,O >= f Wo0.(j6) *1 j6) D.15

Using equation (D.3)

< Wo.,0 > = f- jy) o.)e -JflydY D.16

0 0

Inverse Fourier transforming the integral between the brackets

b

Wo, gt > = 2;r f(- jy)Iwmo(y)dy D.17

0
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STRUCTURAL INTENSITY MEASUREMENTS

There are a variety of wave modes which can propagate in a vibrating structure. Some waves
can propagate almost unaffected past energy dissipation or isolation mechanisms meant for other

wave modes. This has the effect of 'short circuiting' the reduction mechanism(s) for vibrational

energy propagation. One example is the case of in-plane and out-of-plane waves propagating in

a structure. The in-plane waves propagate past the isolators and damping layers used to reduce the
propagation of bending waves. Furthermore, some wave types are more efficient acoustic radiators

than others, and can be the dominant sources of radiation from a vibrating structure. For example,

subsonically propagating out-of-plane waves radiate inefficiently in water, in contrast with the

supersonic in-plane waves which are efficient radiators.

The scattering of propagating waves by discontinuities in their paths can alter their relative

energy content. For instance, the energy of incident bending waves can be redistributed into in-plane
longitudinal and/or in-plane shear waves when the waves encounter discontinuities. The scattering
process(es) can thus lead to an increase in the acoustic radiation from a structure. That is, the radiated

noise is a function of the(se) scattering process(es). Thus, the relationship between the nature of the

discontinuities and the various wave scattering mecha:,isms needs to be better understood. This
would enable the governing parameters of the power exchange between various wave modes to be

quantitatively identified.

A useful tool to describe the dynamic behavior of structures, is the concept of structural

intensity. In general, the instantaneous structural intensity (or Poynting) vector at a point with

positicn vector r, in an isotropic, lossless, elastic medium, is defined [1] as,

0(, t) = a ~ t) .a(F, t) 17.

at

where Y(r, t) is the displacement vector and a (7, t) is the stress tensor

The magnitude of the structural intensity vector is thus the power associated with the waves
propagating in the elastic medium, and the direction of the vector is the direction of propagation of

this power. For the more realistic case of losses existing in the elastic medium, there will be a phase

lag '€' between the stress and displacement. Thus, material damping is accounted for by
incorporating this phase lag in the time dependent parts of the expression for the structural intensity.

It is of interest to consider two simplifications of this definition [2]. Firstly, the instantaneous

intensity can be time-integrated (for transient waves) or time-averaged (for steady-state waves).
This yields a frequency-domain (using Parseval's thee ')description of the net energy flow or

time-averaged power flow respectively, 7 (r, w), whic. re useful for source/sink localization.
The second simplification involves specialization to two-dimensional structures such as plates and
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shells. In this case, it is usual to assume that the displacement vector 1 (, t) can be expanded in a
series in the thickness direction, about the middle surface of the cross-section. Substitution in the

expression for the intensity vector, and integration over the thickness of the structure, leads to the
simplification of the intensity as an intensity resultant per unit length.

It can also be shown that upon rearrangement of the expressions, one obtains the intensity

resultant vector as a product of the stress resultant tensor and the corresponding velocity vector. It
is thus possible to decompose the total structural intensity resultant vector P, into the (scalar) power

flow contributions associated with each wave-type and/or direction. For two-dimensional

structures, these contributions would come from the in-plane shear, in-plane longitudinal and

out--of-plane waves. Each of these wave--types has different dispersion characteristics with

corresponding propagation wavenumbers, for the in-plane shear waves, ks = 2,rf/(IGT-), for the

in-plane longitudinal waves, kL = 2xrf/(VE7) and for the out-of-plane (transverse) waves

The component wavenumbers each have a specific dependence on frequency and the
medium's inertial & elastic properties. Thus, a wavenumber decomposition of the structural

intensity would enable identification of the contributions from the various propagating waves. This

decomposition can lead to a better understanding of the mechanisms of scattering by discontinuities,
modal energy conversion & distribution and modal coupling. This understanding is of importance
in the investigation of the dynamic response of, and acoustic radiation from, fluid-loaded structures

consisting of coupled comple ibstructures.

This paper deals wit dteoretical analysis of structural intensity measurement schemes
for thick plate structures. Firstly, the frequency-wavenumber domain structural intensity is defined.
Then, the various intensity components for the case of thick structures are described. Next, a scheme

is described for measuring the frequency-wavenumber domain structural intensity, which uses finite
difference approximations for the various spatial derivatives required. The proposed scheme's

performance is considered for the practical case of relatively small data sets, and for various levels

of Signal-to-Noise Ratio (SNR). To study the limits of applicability of the structural intensity
measurement scheme, it's performance is characterized. Finally, the results of experiments using the

proposed measurement scheme are also presented in order to illustrate the various issues involved.

Frequency - Wavenumber Analysis

From the definition of structural intensity in equation (1), the intensity resultant over a
surface of area S is defined at an instant of time t as,
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Pro" t) n~J~~ )V~,t.,d 18.

where 7 is the position vector, and Ay is the unit normal to S and 7, and F(r, t) and V(F, t) are the

generalized force and velocity vectors.

The time-averaged (time-integrated) structural intensity for the case of real, steady-state

(transient) time-series, is given from an application of the power theorem [I1 by,

P(F, w) = Real [F•r-, w).7(f,o)] 19.

where (Eo', )) and f(Ti, w) are respectively the force and velocity vectors in the transformed

frequency - space domain and * represents a complex conjugate.

For the analogous case of spatial transformation to the wavenumber domain, it is useful to

consider a general vector spatial field, where the position of a point is defined by a vector r. The

field consists of a generalized force F and a generalized velocity v which vary with both space and

time. The cross-correlation RFv of the force and the velocity is defined using the expectation

operator E[ ) as,

Rpt, (F,,t,r) = E { r(T,t).V(P + f, t + r) I 20.

The force-velocity cross-spectrum SF v , given by the Fourier transformation of the

cross-correlation over time t and space r, gives the frequency-wavenumber domain structural

intensity. For a stationary field, the cross-correlation RF v (and every higher statistical moment in

time) is independent of the absolute observation time t, and depends only on the observation time

difference ¶. Similarly, for a homogeneous field, the cross-correlation (and every higher statistical

moment in space) is independent of the absolute spatial position r, and depends only on the spatial

separation vector ý. As steady-state phenomena are of greater interest in the present study, temporal

stationarity is assumed. The structural discontinuities are of interest however, and consequently,

spatial homogeneity is not assumed. For the homogeneous case, the cross spectrum has a

dependency only on the wavenumber I and the frequency %, thus yielding SF v (Ck, 0). However,

for the inhomogeneous case, there is an additional dependency on the absolute spatial position r,

apart from the wavenumber k and the frequency CLI which yields SF v (k (-k, r). This additional

dependency on the absolute position is resolved by spatial averaging the cross-spectrum over

sections of the domain of interest for which the spatial field can be considered homogeneous. This

gives the frequency-wsvenumber domain cross-spectrum. Thus, taking a spatial average (integral)
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over the domain of the structure, the structural intensity in the frequency-wavenumber domain is,

again from the power theorem [ 1] given by,

S21.
TRkw~) = Rea4?(,().V (k'W)] 1

If a section in the spatial domain cannot be identified for which the response field can be

considered homogeneous, then the frequency-wavenumber spectrum of the structural intensity

would be given by the convolution integral,

'(T, w) = RealJ [?(, w).J* (F - Er, w) dk" 22.

Structural Intensity Components and Their Estimation.

The intensity components to be considered in a structure of interest depend upon the

approximation to exact elasticity theory used to describe the structure. In thick plate structures where

the out-of-plane motion is significantly affected by the transverse shear and rotary inertia, the

Timoshenko-Mindlin theory [21 is appropriate. Based on this theory, there are waves associated with

the shear, bending, and twisting moments for the flexural motion. The corresponding structural
intensity components associated with the out-of-plane waves in the x-direction are listed below.

The out-of-plane shear force component is

Real [G'h(3W + gDw ) j+ w'] 23.

The out-of-plane bending moment component is

4.,•-1 Real [D( + jW'X 24.
21C ax ay nX* 4

The out-of-plane twisting moment component is

I1 IlReal [(1- v)D 4- + 0-) jwi•,Y 25.

where v, D, G', E and h are respectively the poisson's ratio, the flexural rigidity, the corrected shear

modulus, the modulus of elasticity and the thickness. u, v, and w are the x, y, z direction

displacements and 1q) = awlOx and Vpy = aw/Oy.
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The expressions for the y-direction components are similar but with x and y interchanged.

In structures where the coupling between the in-plane extensional and shearing modes significantly

affects the in-plane motion, an approach along the lines of Kane & Mindlin [3], Mindlin and Medick

[4] and Dubbelday [5] needs to be considered. The present analysis will consider the approach of

Kane & Mindlin for the in-plane motion, in conjunction with the Mindlin thick-plate formulation

for out-of-plane motion. The corresponding x-direction components of structural intensity,

associated with the in-plane waves are listed below

The in-plane longitudinal force component is

2, = Real 1(1 -- 2 + iy] u 2.

The in-plane shear force component is

, -- Real [2(+ +v) jWV 27.

The expressions for the y-direction components are similar.

The hybrid approach used above has the implication that there is no direct coupling between

the in-plane and the transverse motion. However, there is an indirect relationship between the

flexural and extensional displacements [6] that comes from the generalized plane stress assumption

for the in-plane motion. For plates lying in the x, y plane, this implies that

eC= 1 -Z (ex + ey) 28.

1-V

Substituting the plate displacements for the strains in equation (12), the out-of-plane motion

contribution from in-plane waves in each orthogonal direction is

Win -plane,i = vh )(ku 29.
2(1 - v) I

where i =x or y. Thus, equations (7) to (11) can all be obtained in terms of the out-of-plane

displacement .w'.

3. Estimation of the Spatial Derivatives

One method of obtaining the spatial derivative (and consequently intensity ) in the

wavenumber domain follows from Fourier transform properties [1]. Thus, the first order

derivative(s) would be given by

78



Vw(?,o) -- [30.

where w(*, w) is the spatial Fourier transform (5) of wQ, wv)

The higher order derivatives are obtained by further application of eq.(12). In the presence

of noise, these estimates have been shown by Pate et al 171 to degrade progressively as the order of

the derivative(s) increases, due to the uncertainty in wavenumber components kx and ky. Instead of

this, finite difference approximations for the derivatives can be used, as suggested by Pavig [8].

Thus, we have for the the first order spatial derivative(s) of the displacement in the T direction using

transducers spaced a distance 'Ai' apart,

8w(iyw) wF +A 0 - w( - 3.
ari 2AIi

The higher order derivatives required to compute the various generalized forces and

velocities can thus be similarly approximated using finite differences, in terms of the signals from

an array of transverse displacement transducers. The highest order of spatial derivatives in equations

(7) to (11) for thick plates is 2. Consequently, the number of measurements required in the array

are 9, to enable approximation of all the partial and mixed spatial derivatives. Thus the array

geometry shown in figure (1), can be used to estimate all of the spatial derivatives up to order two,

thus enabling measurement of in-plane wave intensity as well as the thick-plate out-of-plane wave

intensity.

000
®@@

Figure 1. Array geometry with 9 channels for measuring structural intensity using a finite

difference approximation for the derivatives.

From equations (7) to (11), the structural intensity components can be obtained by either

evaluating convolution integrals of the form of equation (6). The elements in the convolution

integral are obtained directly from the spatial transforms of the response and its derivatives.

Alternatively, if the response field over a section of the structure can be considered homogeneous,

as would be the case under resonant behavior, then using equation (5) and substituting the finite

difference estimates for the required partial derivatives leads to expressions for the frequency

wavenumber intensity components 'i' associated with the different wave-types and/or directions as
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a linear combination of frequency-wavenumber cross-spectra 'Sim' of the signals from the array

transducer channels '1' and 'm', as follows,

P(EwO) = 2 aoj) 32.

where 'alm' are the coefficients of the cross-spectra 'Sb,,' introduced from the finite difference

approximation and the relationships between forces and measured responses. 1 and m can take

values from 1 to 9.

This procedure is graphically represented in figure (2).

Figure 2. Measurement procedure for the frequency--wavenumber domain structural intensity.
The wavenwnber transform is taken over a spatial region of the structure (length or area).

Whether using the space averaged result or the convolution approach, the structural intensity
estimates are only subject to finite-difference errors, provided phase and magnitude errors in the
measurement have been eliminated or minimized. The finite difference errors can be limited by
choosing the array dimensions appropriately [8,9]. The expressions for the x-components of the
finite-difference based approximations of the piece wise space averaged structural intensity
components associated with the various wave-types, in terms of the velocity cross-spectra are listed
below.

The out-of-plane shear force component is

Iqx = Imag [ A 2

The out-of-plane bending moment component is
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lm 3 3m3a- -1 - -2S23 + 2S1) 34.

+ v (S8 3 - S81 + S53 - S51 - 2S23 + 2S21) } ]

The out-of-plane twisting moment component is

't 2-- lmag [(I -Jv)D (S9.- S95 + S45 - S45 - S7S + S7 5 - S6 8 + S65)] 35.

The in-plane longitudinal component is

2= l [ WIl - v2) ,(S• 3 2 - S""12) + V(S"82 - S",2)}] 36.

The in-plane shear component is

I=I mg[ E s.h
I2 Imag 4(1 + v)[4 (S"2 - Su 2 + Sv32 - S' 12)] 37.

where Sij is the velocity cross-spectrum between channels 'i' and 'j'. The superscripts refer to the

in-plane velocity components. The y-direction expressions are similar. Each of the cross spectra

are functions of frequency and wavenumber.

Measurement Limits for Structural Intensity.

The transformation of the frequency-space domain structural intensity to the
frequency-wavenumber domain involves the wavenumber spectrum estimation from the
space-domain data. There are a number of methods available for this, including Fast Fourier
Transform (FFT), Auto Regressive (AR), Moving Average (MA), Auto Regressive Moving Average
(ARMA), Pisarenko Harmonic Decomposition (PHD), Maximum Entropy Method (MEM) and
Maximum Likelihood Method (MLM).

The usual method for estimating the spectrum of discretely sampled deterministic and

stochastic processes is based on the FFT. This approach has the advantage of being computationally
efficient and is valid for a large class of signal processes. The most prominent limitation of the FFT
approach is that of relatively low spectral resolution. A second limitation inherent in the method is

the energy leakage in the spectral domain from the main lobe of the spectral response to the

sidelobes. These two limitations have an especially detrimental effect when only snort data record

lengths are available.

The windowing of data is the fundamental factor that restricts the FFT's frequency

resolution. This is a consequence of the implicit assumption that the finite length of measured data
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is obtained by multiplying an infinite length of the sampled data sequence by a window function
which is zero outside the measurement interval. This multiplication of the actual time-series by a

windowing function implies that the overall transform is the convolution of the desired transform
of the actual time-series with the transform of the windowing function. This convolution results in

the spreading of a narrow-bandwidth signal into adjacent frequencies. This is the leakage

phenomenon, which distorts the spectrum estimate from the desired true spectrum.

The most narrow spectral response of the transform estimate is limited to that of the
main-lobe width of the window's transform, and is independent of the data. It is proportional to the

reciprocal of the length of data being transformed. The type of window function chosen depends on

the desired compromise between reducing leakage and increasing resolution. This trade-off occurs
because when windows with tapered ends are used to obtain lower sidelobes, the main lobe width

increases, reducing resolution.

T':e various alternative methods listed previously have been proposed to alleviate the

inherent limitationm )f the FFT. These methods are often more restricted in the class of signals to
which they are applicable. They can provide a substantial improvement in the spectral resolution

and signal detectability. These performance advantages however, are strongly dependent on the

Signal to Noise Ratio (SNR). It has been shown in previous studies [10] that for low enough SNRs,

the alternative spectral estimates often provide no improvement over conventional FFT-based

estimates. They have the further disadvantage of higher computational requirements. The structural

intensity measurements can involve SNR values as low as -10 dB. At such low values of SNR, it

is clearly advantageous to consider an FFT implementation of the space-wavenumber
transformation. This provides a conservative estimate of the measurement limits, which can then

be improved using alternative methods if necessary.

Of the two FET-based spectral estimation techniques available, this analysis will consider

the periodogram method in preference to the autocorrelation method. This is because the

autocorrelation estimate can sometimes yield negative values for the PSD, which is physically

unrealistic. Thus, when measured data is available only for samples wo, wl, w2 ,.... wNv-, equally
spaced Ax apart, the estimate of the spectrum is given by,

N-1
,'ER (k) = E A1 x Wn e x2r kn AX) 38.

WPER lNA x wn=0 2~kA)

which is defined for the spectral interval - 1/(2 Ax) < k "< 1/(2 Ax). It is to be noted that the

expectation operator still needs to be applied. The use of the FFT thus permits evaluation of the
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WpER (k) ata discrete set of N equally spaced spectral points km = m Ak where m = 0, 1, ..., N-I

and Ak = 1/(N Ax).

For the frequency-wavenumber domain structural intensity measurement using finite and
small-length data sets, the wavenumber resolution is the limiting factor. The dispersion curves for
the various wave-types approach each other as the frequency approaches zero. Consequently, there

is a lower wavenumber limit, kAin, below which the wavenumber separation is lower than the

available wavenumber resolution A k . The frequency corresponding to this wavenumber is the
lower frequency limit. Below this lower frequency bound, the FFT-based measurement cannot

distinguish between the dispersion curves associated with the various wave-types. The upper

frequency bound is the frequency corresponding to the maximum wavenumber that can be

measured, and is given by the Nyquist criterion to be km= = xr/(Ax). Above this wavenumber,

aliasing phenomena will cause errors in the estimation of the spectrum.

Experimental Analysis

ExperimenLs were performed using the proposed approach, on a Plexiglass model of a
semi-infinite beam, 0.0254m thick, 1.17m long and 0.05m wide. One end of the beam was
embedded in sand to provide an anechoic termination, as shown in figure (3). The excitation was
provided using an electrodynamic shaker attached to the beam by direct threading at the free end.

FAmeasurement separation
plexiglass beam 1 inch thick 0.012m

SAND
excitatio
load

Stereo Needlel

Calibrated Scanner L

Figure 3. Experimental set-up for frequency-wavenumber intensity measurements

The frequency-wavenumber spectrum was obtained by measuring the response at 179
locations spaced 0.012m apart. The sample record was zero-padded to 256 points, and

spatial-transformed. The limiting wavenumber is given by

kmax < 11- n - 261.7m-39
A 0.012
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where A is the measurement spacing. The beam-response measurement was performed using a

Radio Shack stereophone cartridge as a velocity transducer. The model used had an operational

upper frequency limit of 18 kHz. The excitation was consequently limited to 20 kHz. The frequency
response estimate at each measurement location on the beam was obtained as a cross-spectrum

between the acceleration at that location and the input load. The spatial transformed results for the

acceleration and its spatial derivatives (obtained using finite differences) were then used to compute

the structural intensity in the frequency-wavenumber domain..

The approach used is that based on a homogeneous spatial field. That is the structural

intensity components are evaluated using expressions of the form of equations (17) to (21). This

assumption is not quite correct in the case of the semi-infinite beam. and as will be shown later the
results reflect this. The results of the analysis are shown in figure (4). The two intensity components

observed correspond to the in-plane waves (the linear frequency-wavenumber relation) and the
out-of-plane waves (the non-linear frequency-wavenumber relation). The horizontal axis
corresponds to positive and negative wavenumbers bounded by the maximum value computed

above. The vertical axis corresponds to the frequency axis with the 18kHz upper limit mentioned

previously.

0

25
LZ.

20 "PA

0 50 ioo 150 200 250
Wavenumber m-1

Figure 4. Experimentally measured frequency-wavenwnber-domain intensity
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Careful examination of the results in figure (4) reveals that while the general trends of the

two components of intensity are as expected followed, the curves show some features which cannot

be attributed to physical phenomena. For example, upon expansion of the wavenumber region

containing the two curves it is observed that one of the curves does not start from the origin. These
inaccuracies are attributed to the fact that for a semi-infinite beam, the response and structural

intensity are monotonically decreasing away from the input. Therefore the approximation of a

piecewise homogeneous spatial field is not appropriate. In this case a convolution approach to

evaluate the structural intensity components from the estimates of the response and its derivatives

should be used.

Conclusion

A method for discriminating between the components of the structural intensity propagating

through a structure has been developed. The dependency of the measurement method and the

evaluation of the structural intensity as a frequency-wavenumber function for both homogeneous

and non-homogeneous response fields have been explored. The effects of expected noise and

damping levels, as well as the relatively short data sets, on the measurements have been considered

to obtain an understanding of the governing factors that control the quality and resolution of the

results.

The proposed approach has been implemented on a semi-infinite beam, using the

assumption of a homogeneous spatial response field. In this case, while the expected general trends

can be observed in the results, there are inaccuracies which can only be attributed to the

homogeneous field assumption. Analysis of the data without using this assumption will be explored

in the future together with the analysis of the structural intensity for the beam if a structural

discontinuity is introduced •,.me distance away from the excitation point.
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